
1

PowerPC 405GP Endianness and
Bit Naming Conventions
January 5, 2000 Version: 1.1

IBM Microelectronics
Research Triangle Park, NC
ppcsupp@us.ibm.com
http://www.chips.ibm.com

Abstract - This application note will help users of the PowerPC 405GP embedded controller chip
understand various aspects of big and little endian support in the 405GP as well as how the bit
naming conventions used for the chip apply to the PowerPC processor core and the peripherals
and interfaces of the chip.

1. Definitions

Endianness refers to the byte data significance versus byte address assignment of a multi-byte scalar
quantity. Little endian assignment specifies that the least significant byte of a scalar item is assigned to
the lowest byte address value. Big endian assignment specifies that the most significant byte of a scalar
item is assigned to the lowest byte address value. Please note that endianness does not affect single
byte items.

Bit naming conventions refer to the assignment of sequence numerals in a bus or register name versus
the bit significance of a scalar quantity. Byte naming conventions refer to the assignment of sequence
numerals for the byte lanes of a bus or register versus the byte significance of a multi-byte entity.

Please note well that bit and byte naming conventions are not related to the concept of endianness; the
terms little endian and big endian should not be used to refer to naming conventions.

2. PowerPC and industry common bit naming conventions

The PowerPC architecture specifies a bus and register bit naming convention in which the most
significant bit (MSB) name incorporates the numeral 0. As the significance of the bits decrease across
the bit vector (register or bus), the numeral in the name increases linearly such that a 32-bit vector will
have a least significant bit (LSB) name with the numeral 31. Most common interfaces at this time use
thew opposite convention where a name with the numeral 0 represents the least significant bit vector
position. Table 1 shows the correspondence of bit names between the two conventions.

PowerPC Architecture Bit Naming Convention

MSB
bit 0 bit 1 : bit 6 bit 7 bit 8 bit 9 : bit 14 bit 15 bit 16

bit 17 :
bit 22 bit 23 bit 24

bit 25 :
bit 30

LSB
bit 31

Most Significant Byte Next Byte Next Byte Least Significant Byte

bit 31
MSB

bit 30 :
bit 25

bit 24 bit 23 bit 22 :
bit 17

bit 16 bit 15 bit 14 : bit 9 bit 8 bit 7 bit 6 : bit 1 Bit 0
LSB

Industry Common Bit Naming Convention

Table 1: Bit Naming Conventions

2

The 405 CPU registers, 405GP internal data paths and address buses, and some of the external
interfaces use the PowerPC bit naming convention. Certain external interfaces use the industry common
convention.

A key point to note is that for a 32-bit address reference A0:A31, A0 is the most significant address bit,
and A31 is the least significant address bit. The least two significant address bits represent the byte
offset address from a 32-bit word address.

3. Data types and endianness in the PowerPC 405GP

Hardware supported data types of the PowerPC 405GP are byte, half-word, word and byte-string. Data
types resident in a register are positioned in the least significant byte positions of the register. Table 2
shows a register view of word, half-word and byte operands.

PowerPC 405GP
Data Types

Register
R0:R7

Register
R8:R15

Register
R16:R23

Register
R24:R31

Word (32 bits) Byte 0 Byte 1 Byte 2 Byte 3

Half-word (16 bits) Byte 0 Byte 1

Byte (8 bits) Byte 0

Table 2: PowerPC 405GP data types

Items of the supported data types are stored in memory at a byte address representing the most
significant byte of the item for big endian storage, or least significant byte for little endian storage.
Subsequent bytes of the item are stored at linearly increasing byte address locations. The 405GP
supports both big endian and little endian views of memory storage for the data types supported. Table 3
shows how the basic data types are stored in memory in both big and little endian modes.

Memory Address – byte offset A30:A31
Storage Mode Data Type

b00 b01 b10 b11

Word Byte 0 Byte 1 Byte 2 Byte 3

Half-word Byte 0 Byte 1Big Endian

Byte Byte 0

Word Byte 3 Byte 2 Byte 1 Byte 0

Half-word Byte 1 Byte 0Little Endian

Byte Byte 0

Table 3: Endianness vs. memory storage for the data types

Multi-byte data items in memory are not required to be naturally aligned, e.g. a 32-bit word can be stored
at an address with a byte offset of 01. PowerPC instructions are always single 32-bit words and must be
naturally aligned (located at an address with a byte offset of 00). More detailed examples of the various

3

data types mapped into big-endian and little-endian memory spaces are in the PowerPC 405GP User’s
Manual, section 3.4, “Byte Ordering”.

The 405 CPU treats all operands in the ALU and GPRs as big endian. The CPU expects all instructions
fed into the pipeline to be in big endian format. Byte swapping in the data path to or from memory
provides for support of little endian data storage. The instruction interface also has byte steering logic to
support instruction fetch from little endian memory. All memory is viewed as big endian by default. A
memory region may be programmed as little endian via a memory attribute. The endian storage attribute
for a memory region is sourced either from the SLER register when operating with the memory
management unit (MMU) disabled or from the endian attribute in the MMU’s TLB entries. It is important to
note that when the 405 CPU boots, ALL memory is defined big endian. The PowerPC 405GP User’s
Manual, section 3.4.3, “Endian Storage Attribute” provides a more detailed explanation.

4. Instruction fetch considerations

Table 5 shows the endianness relationship of instructions in the CPU pipeline, instruction cache and
memory for both big endian and little endian organizations. Instructions in memory can be in big or little
endian format; in the I-cache, they are always stored in big endian format. The 405 CPU’s internal
instruction bus interface performs the byte swapping necessary when instructions are stored in little
endian memory. Even though it is possible for PowerPC instructions to be stored in little endian memory
space, there are no apparent advantages to doing so. It is highly recommended that PowerPC code be
located in big endian storage. Because the 405 CPU defines all storage as big endian at boot, the boot
code must be ordered as big endian. When using the 405GP’s on-chip memory (OCM) for instruction
storage, this memory space must be defined as big endian because the byte steering logic is not in the
instruction-side OCM interface’s path to the instruction pipeline of the 405 CPU.

5. Load / store data access considerations

Table 6 shows an example of the endianness relationship of four-byte (word) data in the registers, data
cache and memory for both big endian and little endian organizations. Byte steering logic that provides
for little endian support is between the 405 CPU and the data cache. This means that data resident in
both the cache and system memory is either big endian or little endian depending on the corresponding
endian attribute. The diagram shows the byte steering for a 32-bit word, but the logic also provides for
the correct byte steering for half-word loads and stores as described in Table 3. When using the 405GP’s
on-chip memory (OCM) for data storage, this memory space may be defined for either big endian or little
endian mode.

The PowerPC architecture also provides byte-reverse load and store instructions as a mechanism for
obtaining little endian storage and as a means to change the endianness of a data word; these
instructions are documented in Table 4. It should be noted that when using the byte reverse load and
store instructions to change the endianness of data, it does not automatically change the storage attribute
definition. It is possible to have little endian (byte reversed big endian) data stored in a big endian
memory region. Other code that operates on the data may assume that the data is big endian because it
is in a big endian region.

Mnemonic Description of PowerPC Byte-reverse Instruction

lhbrx Load half-word to register with byte reverse

lwbrx Load word to register with byte reverse

sthbrx Store half-word to memory with byte reverse

stwbrx Store word to memory with byte reverse

Table 4: Byte reverse instructions

4

Instruction Storage Model

Big Endian Memory Region Little Endian Memory Region

Instruction Word in
System Memory

@Byte Address

Byte 0

@00

Byte 1

@01

Byte 2

@10

Byte 3

@11

Byte 3

@00

Byte 2

@01

Byte 1

@10

Byte 0

@11

405 CPU Byte
Steering, On-chip
Bus and External
Memory Interface

Instruction Word in
405 CPU I-Cache

@Byte Address

Byte 0

@00

Byte 1

@01

Byte 2

@10

Byte 3

@11

Byte 0

@00

Byte 1

@01

Byte 2

@10

Byte 3

@11

CPU Instruction
Pipeline Path

Instruction Word in
405 CPU Pipeline Byte 0 Byte 1 Byte 2 Byte 3 Byte 0 Byte 1 Byte 2 Byte 3

Table 5: Instruction storage for big and little endian modes

5

Data Storage Model

Big Endian Memory Region Little Endian Memory Region

Data in System
Memory

@Byte Address

Byte 0

@00

Byte 1

@01

Byte 2

@10

Byte 3

@11

Byte 3

@00

Byte 2

@01

Byte 1

@10

Byte 0

@11

On-chip Bus and
External Memory

Interface

Data in 405 CPU
Data Cache

@Byte Address

Byte 0

@00

Byte 1

@01

Byte 2

@10

Byte 3

@11

Byte 3

@00

Byte 2

@01

Byte 1

@10

Byte 0

@11

CPU Data Path
with Byte Steering

Data in 405 CPU
Register Byte 0 Byte 1 Byte 2 Byte 3 Byte 0 Byte 1 Byte 2 Byte 3

Table 6: Data storage for big and little endian modes

6. Naming conventions for interfaces of the PowerPC 405GP chip

Table 7 shows the address bus naming conventions used for the major functional blocks and interfaces
on the 405GP chip. The 405 CPU, on-chip buses and external bus interface use the PowerPC bit naming
conventions. Since the PCI bus is an industry standard interface, it uses the PCI specified conventions
for its multiplexed address / data bus. The SDRAM interface uses industry common naming conventions
for the address bus. Please consult the PowerPC 405GP User’s Manual, section 13.4, “PLB Physical
Address to Memory Address Mapping” for details on how the SDRAM address pins are used in a row /
column manner configuration for various SDRAM configurations.

Table 8 shows the data bus naming conventions used for the major functional blocks and interfaces on
the 405GP chip. As with the address bus, the 405 CPU, on-chip buses and external bus interface use the
PowerPC bit naming conventions. Again, the PCI bus uses the PCI specified conventions for its
multiplexed bus. For the SDRAM interface, data bit 0 corresponds to the 405 CPU and on-chip bus data
bit 0.

Table 9 shows the data bus byte enable naming conventions used for the major functional blocks and
interfaces on the 405GP chip. It shows the byte enable assignment to the chip bus byte lanes and the
address correspondence to the byte enables for a byte address.

6

Address Bus Naming

Word Address Byte Address

Functional Unit or
Interface MSB Word LSB Byte MSB LSB

405 CPU A0 A1 : A28 A29 A30 A31

External Bus
Interface PerAddr0 PerAddr1 :

PerAddr28 PerAddr29 PerAddr30 PerAddr31

PCI Bus Interface PCIAD31 PCIAD30 :
PCIAD3 PCIAD2 PCIAD1 PCIAD0

SDRAM Interface MemAddr12 MemAddr11 :
MemAddr1 MemAddr0

Table 7: Address Bus Naming

Data Bus Naming and Byte Lane Assignment
Functional Unit

or Interface MSB BL0 BL1 BL2 BL3 LSB

405 CPU D0 : D7 D8 : D15 D16 : D23 D24 : D31

External Bus
Interface

PerData0 :
PerData7

PerData8 :
PerData15

PerData16 :
PerData23

PerData24 :
PerData31

PCI Bus Interface PCIAD31 :
PCIAD24

PCIAD23 :
PCIAD16

PCIAD15 :
PCIAD8 PCIAD7 : PCIAD0

SDRAM Interface MemData0 :
MemData7

MemData8 :
MemData15

MemData16 :
MemData23

MemData24 :
MemData31

Table 8: Data Bus Naming

7

Functional Unit
or Interface Byte Enable Naming and Byte Address Correspondence

405 CPU
BE0

A[30:31] = b00

BE1

A[30:31] = b01

BE2

A[30:31] = b10

BE3

A[30:31] = b11

External Bus
Interface

PerWBE0*

PerAddr[30:31] =
b00

PerWBE1*

PerAddr[30:31] =
b01

PerWBE2*

PerAddr[30:31] =
b10

PerWBE3*

PerAddr[30:31] =
b11

PCI Bus Interface
PCIC0[BE0*]

PCIAD[1:0] = b00

PCIC1[BE1*]

PCIAD[1:0] = b01

PCIC2[BE2*]

PCIAD[1:0] = b10

PCIC3[BE3*]

PCIAD[1:0] = b11

SDRAM Interface DQM0 DQM1 DQM2 DQM3

Table 9: Byte Enable Naming

7. Interface endianness issues

Little endian support is a common requirement for exchanging data with x86 architecture peripherals and
for data exchange across a PCI interface as normal data definition in PCI space is little endian. Please
note that there are no endian translation mechanisms on 405GP chip other than 405 CPU’s load / store
instructions in conjunction with memory region endianness attributes, and the byte-swapping load / store
instructions. The 405 CPU can be used to perform endianness translation by the following method:

1. Use a load followed by byte-reverse store (or byte reverse load followed by a store) loop to modify
data in place in a memory region.

2. Change the endian attribute for that memory region.

Table 10 provides an example of data mapping between the 405 CPU and PCI address space. This table
assumes a little endian attribute value for the memory region mapped to the PCI memory space.

8

405 CPU Byte Lanes PCI Byte Lanes
Data

logical
Size

bytes

405 CPU
Address
[30:31]. BL0 BL1 BL2 BL3 BL3 BL2 BL1 BL0

PCI
Address

[1:0]

b00 11 11 00

b01 11 11 01

b10 11 11 10
11 1

b11 11 11 11

b00 22 11 11 22 00
1122 2

b10 22 11 11 22 10

11223344 4 b00 44 33 22 11 11 22 33 44 00

Table 10: 405 CPU to PCI memory map for PowerPC data types

All Rights Reserved

* Indicates a trademark or registered trademark of the International Business Machines Corporation.

** All other products and company names are trademarks or registered trademarks of their respective holders.

IBM, the IBM logo, and PowerPC are registered trademarks of the International Business Machines Corporation.

IBM will continue to enhance products and services as new technologies emerge. Therefore, IBM reserves the right to make
changes to its products, other product information, and this publication without prior notice. Please contact your local IBM
Microelectronics representative on specific standard configurations and options.

IBM assumes no responsibility or liability for any use of the information contained herein. Nothing in this document shall operate as
an express or implied license or indemnity under the intellectual property rights of IBM or third parties. NO WARRANTIES OF ANY
KIND, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE ARE OFFERED IN THIS DOCUMENT.

