- Single- or Dual-Supply Operation - Wide Range of Supply Voltages 1.5 V to 18 V - Very Low Supply Current Drain 150 μA Typ at 5 V 65 μA Typ at 1.4 V - Built-In ESD Protection - High Input Impedance . . . $10^{12} \Omega$ Typ - Extremely Low Input Bias Current 5 pA Typ - Ultrastable Low Input Offset Voltage - Input Offset Voltage Change at Worst-Case Input Conditions Typically 0.23 μV/ Month, Including the First 30 Days - Common-Mode Input Voltage Range Includes Ground - Outputs Compatible With TTL, MOS, and CMOS - Pin-Compatible With LM393 ## description This device is fabricated using LinCMOSTM technology and consists of two independent voltage comparators, each designed to operate from a single power supply. Operation from dual supplies is also possible if the difference between the two supplies is 1.4 V to 18 V. Each device features extremely high input impedance (typically greater than $10^{12}\,\Omega$), which allows direct interface to high-impedance sources. The output are n-channel open-drain configurations and can be connected to achieve positive-logic wired-AND relationships. The capability of the TLC352 to operate from 1.4-V supply makes this device ideal for low-voltage battery applications. ## TLC352C, TLC352I . . . D OR P PACKAGE TLC352M . . . JG PACKAGE (TOP VIEW) TLC352M . . . FK PACKAGE (TOP VIEW) NC - No Internal connection ## symbol (each comparator) The TLC352 has internal electrostatic discharge (ESD) protection circuits and has been classified with a 2000-V ESD rating tested under MIL-STD-883C, Method 3015. However, care should be exercised in handling this device as exposure to ESD may result in degradation of the device parametric performance. The TLC352C is characterized for operation from 0° C to 70° C. The TLC352I is characterized for operation over the industrial temperature range of -40° C to 85° C. The TLC352M is characterized for operation over the full military temperature range -55° C to 125° C. LinCMOS is a trademark of Texas Instruments Incorporated. ## **AVAILABLE OPTIONS** | | Via may | | PACKA | GE | | |-----------------|--------------------------------|----------------------|----------------------|---------------------|--------------------| | TA | V _{IO} max
AT 25°C | SMALL-OUTLINE
(D) | CHIP-CARRIER
(FK) | CERAMIC DIP
(JG) | PLASTIC DIP
(P) | | 0°C to 70°C | 5 mV | TLC352CD | _ | _ | TLC352CP | | – 40°C to 85°C | 5 mV | TLC352ID | _ | _ | TLC352IP | | – 55°C to 125°C | 5 mV | _ | TLC352MFK | TLC352MJG | _ | The D packages are available taped and reeled. Add R suffix to device type (e.g., TLC352 CDR). ## equivalent schematic (each comparator) ## TLC352 LinCMOS™ DUAL DIFFERENTIAL COMPARATOR SLCS016 - D2901, SEPTEMBER 1985 - REVISED OCTOBER 1990 | absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | |--| | Supply voltage, V _{DD} (see Note 1) | | Differential input voltage, V _{ID} (see Note 2) ± 18 V | | Input voltage, V _I V _{DD} | | Input voltage range, V _I – 0.3 V to 18 V | | Output voltage, VO | | Input current, I $_{ m l}$ | | Output current, I _O 20 mA | | Duration of output short circuit to ground (see Note 3) unlimited | | Continuous total dissipation See Dissipation Rating Table | | Operating free-air temperature range, T _A TLC352C | | TLC352I – 40°C to 85°C | | TLC352M – 55°C to 125°C | | Storage temperature range – 65°C to 150°C | | Case temperature for 60 seconds: FK package | | Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package | | Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - NOTES: 1. All voltage values except differential voltages are with respect to the network ground. - 2. Differential voltages are at IN+ with respect to IN -. - 3. Short circuits from outputs to $V_{\mbox{DD}}$ can cause excessive heating and eventual device destruction. ## **DISSIPATION RATING TABLE** | | | | | _ | | | |---------|------------------------------------|--------------------|--------------------------------|---------------------------------------|---------------------------------------|--| | PACKAGE | $T_A \le 25^{\circ}C$ POWER RATING | DERATING
FACTOR | DERATE
ABOVE T _A | T _A = 70°C
POWER RATING | T _A = 85°C
POWER RATING | T _A = 125°C
POWER RATING | | D | 500 mW | 5.8 mW/°C | 64°C | 464 mW | 377 mW | N/A | | FK | 500 mW | 11.0 mW/°C | 104°C | 500 mW | 500 mW | 275 mW | | JG | 500 mW | 8.4 mW/°C | 90°C | 500 mW | 500 mW | 210 mW | | Р | 500 mW | N/A | N/A | 500 mW | 500 mW | N/A | ## recommended operating conditions | | | _ | TLC352C | | TL(| TLC352I | | TLC352M | 7 | Ė | |--|-------------------------|-----|---------|--------|---------|-----------------------------|---------|---------|-----|-----| | | | MIN | NOM | MAX | MIN | MIN NOM MAX MIN NOM MAX MIN | III × | NOM MAX | MAX | 200 | | Supply voltage, VDD | | 1.4 | | 16 1.4 | 1.4 | 1 | 16 1.4 | 4 | 16 | > | | or/(oxosportation opom domino) | $V_{DD} = 5 V$ | 0 | | 3.5 | 0 | 3.8 | 3.5 | 0 | 3.5 | > | | Collinion Fillode III put voltage, vIC | $V_{DD} = 10 \text{ V}$ | 0 | | 8.5 | 0 | 8.5 | 2 | 0 | 8.5 | > | | Operating free-air temperature, TA | | 0 | | 70 | 70 - 40 | 8 | 85 – 55 | 2 | 125 | ၁့ | | | | | | | | | | | | | # electrical characteristics at specified free-air temperature, $V_{ m DD}$ = 1.4 V (unless otherwise noted) | | OAD AMETER | TEGT COM | SHOITIGING | +-
- | | TLC352C | | | TLC352I | | 1 | TLC352M | | FINE | |----------|------------------------------------|----------------------------|------------------|------------|-------------|---------|-----|-------------|---------|-----|-------------|---------|-----|-------------------| | | ranameren | IESI CON | DILIGNS | - Α- | MIN | ТҮР | MAX | MIN | TYP | MAX | NIM | TYP | MAX | | | ,
, | os of our to the trice! | | Soc Note 4 | 25°C | | 2 | 2 | | 2 | 5 | | 2 | 5 | /\~ | | <u>0</u> | IIIput Oliset Voltage | | See Note 4 | Full range | | | 6.5 | | | 7 | | | 10 | ^ | | 9 | tacritic to the trice | | | 25°C | | 1 | | | 1 | | | 1 | | ЬA | | <u>o</u> | iriput oliset currerit | | | MAX | | | 0.3 | | | 1 | | | 10 | hA | | <u>!</u> | + cond + con | | | 25°C | | 2 | | | 2 | | | 2 | | ρA | | <u>B</u> | IIIput Dias cuiterit | | | MAX | | | 9.0 | | | 2 | | | 20 | hA | | VICR | Common-mode input
voltage range | | | Full range | 0 to
0.2 | | | 0 to
0.2 | | | 0 to
0.2 | | | > | | , | | | | 25°C | | 100 | 200 | | 100 | 200 | | 100 | 200 | /\~ | | ^OL | Low-level output voltage | | | Full range | | | 200 | | | 200 | | | 200 | ^ | | lor | Low-level output current | $V_{ID} = -0.5 \text{ V},$ | $V_{OL} = 0.3 V$ | 25°C | 1 | 1.6 | | 1 | 1.6 | | 1 | 1.6 | | mA | | <u> </u> | Supply current | V:= 0 = V | 000 | 25°C | | 65 | 150 | | 92 | 150 | | 92 | 150 | < | | ממי | (two comparators) | VID = 0.3 V, | INO IOAG | Full range | | | 200 | | | 200 | | | 200 | K _{II} , | † All characteristics are measured with zero common-mode input voltage unless otherwise noted. Full range is 0°C to 70°C for TLC352C, -40°C to 7LC352C, -65°C to 7LC352I, -55°C to 125°C for TLC352M. IMPORTANT: See Parameter Measurement Information. The offset voltage limits given are the maximum values required to drive the output above 1.25 V or below 150 mV with a 10-kΩ resistor between the output and Vpp. They can be verified by applying the limit value to the input and checking for the appropriate output state. | (unless otherwise noted) | |--------------------------| | > | | II | | <u> </u> | | ৄ | | ~ | | e-air temperature, | | fre | | specified | | at | | characteristics | | <u>=</u> | | electrica | | H | 5 | /\& | > | рА | hA | рА | hA | > | > | hA | μA | /\~ | <u> </u> | mA | < | <u> </u> | | |------------|----------------|-------------------|----------------------|---------------------|------------------------|----------|----------------------|-------------------|-------------------------------|----------------------|----------------|------------------|--------------|-----------------------------|----------------|-------------------|--| | | MAX | 2 | 10 | | 10 | | 20 | | | | 1 | 400 | 200 | | 0.3 | 0.4 | | | TLC352M | ТҮР | 1 | | 1 | | 5 | | | 10 | 0.1 | | 150 | | 16 | 0.15 | | | | 1 | MIN | | | | | | | 0 to
VDD – 1 | 0 to
VDD – 1.5 | | | | | 9 | | | | | | MAX | 2 | 7 | | 1 | | 2 | | | | 1 | 400 | 200 | | 0.3 | 0.4 | | | TLC352I | TYP | 1 | | 1 | | 2 | | | 2 | 0.1 | | 150 | | 16 | 0.15 | | | | L | NIM | | | | | | | 0 to
VDD - 1 | 0 to
V _{DD} – 1.5 | | | | | 9 | | | | | | MAX | 5 | 6.5 | | 0.3 | | 9.0 | | | | 1 | 400 | 200 | | 0.3 | 0.4 | | | TLC352C | TYP | 1 | | 1 | | 2 | | | 5 | 0.1 | | 150 | | 16 | 0.15 | | | | 1 | MIN | | | | | | | 0 to
VDD – 1 | 0 to
VDD – 1.5 | | | | | 9 | | | | | 1.1 | _
∀ | 25°C | Full range | 25°C | MAX | 25°C | MAX | 25°C | Full range | 25°C | Full range | 25°C | Full range | 25°C | 25°C | Full range | | | SIACITICIA | LESI CONDINONS | Sec Note E | See Note 3 | | | | | | | VOH = 5 V | VOH = 15 V | , | 10L = 4 111A | VOL = 1.5 V | 000 | ואט וטמע | | | 00 1831 | 1531 | Siss = -7\ = -1/\ | VIC = VICR IIIIII, | | | | | | | \(\frac{1}{2} = -1\) | ۸ I = OI ۸ | 77.4 - 77. | ۷۱۵ = ۱ ۷, | VID = -1 V, | V.= -1 V | ۷ID = ۱ ۷, | | | DADAMETER | TANAIME I EN | osofor together | input oilset voitage | tacario tocato tica | וווסמו סווספו כמוופווו | +1001 | וווחמו מושא כמוופווו | Common-mode input | voltage range | High-level output | current | Low-level output | voltage | Low-level output
current | Supply current | (two comparators) | | | | | | 0 | | 2 | <u> </u> | <u>8</u> | | >
S
X | | H _O | | ^OL | loL | <u> </u> | <u> </u> | | [†] All characteristics are measured with zero common-mode input voltage unless otherwise noted. Full range is 0°C to 70°C for TLC352C, -40°C to 85°C for TLC352I, -55°C to 125°C for TLC352M. IMPORTANT: See Parameter Measurement Information. ## switching characteristics, V_{DD} = 5 V, T_A = 25°C | isponse time RL connected to 5 V through 5.1 kΩ, See Note 6 TTL-level input step $\frac{R}{C}$ and $\frac{MN}{TYP}$ $\frac{MAX}{P}$ $\frac{R}{P}$ $\frac{R}{P}$ $\frac{R}{P}$ $\frac{R}{P}$ $\frac{R}{P}$ $\frac{R}{P}$ $\frac{R}{P}$ is $\frac{R}{P}$ \frac | PARAMETER | TEST | TEST CONDITIONS | TLC352 | TLC352C, TLC352I
TLC352M | LIND | |--|-----------|------|---------------------------------------|--------|-----------------------------|------| | RL connected to 5 V through 5.1 k $\Omega_{\rm c}$, See Note 6 TTL-level input step | | | | N | TYP MAX | | | CL = 15 pF‡, See Note 6 TTL-level input step 200 | , amit | | 100-mV input step with 5-mV overdrive | | 650 | Ğ | | | | , | TTL-level input step | | 200 | 21 | $^{^{\}ddagger}\mathsf{C}_\mathsf{L}$ includes probe and jig capacitance. NOTE 5: The offset voltage limits given are the maximum values required to drive the output above 4 V or below 400 mV with a 10-kΩ resistor between the output and VDD. They can be verified by applying the limit value to the input and checking for the appropriate output state. NOTE 6: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V. ## PARAMETER MEASUREMENT INFORMATION The digital output stage of the TLC352 can be damaged if it is held in the linear region of the transfer curve. Conventional operational amplifier/comparator testing incorporates the use of a servo loop that is designed to force the device output to a level within this linear region. Since the servo-loop method of testing cannot be used, the following alternative for measuring parameters such as input offset voltage, common-mode rejection, etc., are offered. To verify that the input offset voltage falls within the limits specified, the limit value is applied to the input as shown in Figure 1(a). With the noninverting input positive with respect to the inverting input, the output should be high. With the input polarity reversed, the output should be low. A similar test can be made to verify the input offset voltage at the common-mode extremes. The supply voltages can be slewed as shown in Figure 1(b) for the V_{ICR} test, rather than changing the input voltages, to provide greater accuracy. A close approximation of the input offset voltage can be obtained by using a binary search method to vary the differential input voltage while monitoring the output state. When the applied input voltage differential is equal but opposite in polarity to the input offset voltage, the output changes state. Figure 1. Method for Verifying That Input Offset Voltage Is Within Specified Limits ## PARAMETER MEASUREMENT INFORMATION Figure 2 illustrates a practical circuit for direct dc measurement of input offset voltage that does not bias the comparator into the linear region. The circuit consists of a switching-mode servo loop in which U1a generates a triangular waveform of approximately 20-mV amplitude. U1b acts as a buffer, with C2 and R4 removing any residual dc offset. The signal is then applied to the inverting input of the comparator under test, while the noninverting input is driven by the output of the integrator formed by U1c through the voltage divider formed by R9 and R10. The loop reaches a stable operating point when the output of the comparator under test has a duty cycle of exactly 50%, which can only occur when the incoming triangle wave is sliced symmetrically or when the voltage at the noninverting input exactly equals the input offset voltage. Voltage divider R9 and R10 provides a step up of the input offset voltage by a factor of 100 to make measurement easier. The values of R5, R8, R9, and R10 can significantly influence the accuracy of the reading; therefore, it is suggested that their tolerance level be 1% or lower. Measuring the extremely low values of input current requires isolation from all other sources of leakage current and compensation for the leakage of the test socket and board. With a good picoammeter, the socket and board leakage can be measured with no device in the socket. Subsequently, this open-socket leakage value can be subtracted from the measurement obtained with a device in the socket to obtain the actual input current of the device. Figure 2. Circuit for Input Offset Voltage Measurement ## PARAMETER MEASUREMENT INFORMATION Response time is defined as the interval between the application of an input step function and the instant when the output reaches 50% of its maximum value. Response time, low-to-high-level output, is measured from the leading edge of the input pulse, while response time, high-to-low level output, is measured from the trailing edge of the input pulse. Response-time measurement at low input signal levels can be greatly affected by the input offset voltage. The offset voltage should be balanced by the adjustment at the inverting input (as shown in Figure 3) so that the circuit is just at the transition point. Then a low signal, for example 105-mV or 5-mV overdrive, causes the output to change state. **TEST CIRCUIT** **VOLTAGE WAVEFORMS** NOTE A: C_I includes probe and jig capacitance. Figure 3. Response, Rise, and Fall Times Circuit and Voltage Waveforms ### **IMPORTANT NOTICE** Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current. TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Copyright © 1995, Texas Instruments Incorporated