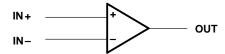

MC3303, MC3403 QUADRUPLE LOW-POWER OPERATIONAL AMPLIFIERS

SLOS101 - D2517, FEBRUARY 1979 - REVISED SEPTEMBER 1990

DORNPACKAGE

- Wide Range of Supply Voltages Single Supply . . . 3 V to 36 V or Dual Supplies
- Class AB Output Stage
- True Differential Input Stage
- Low Input Bias Current
- Internal Frequency Compensation
- Short-Circuit Protection
- Designed to Be Interchangeable With Motorola MC3303, MC3403

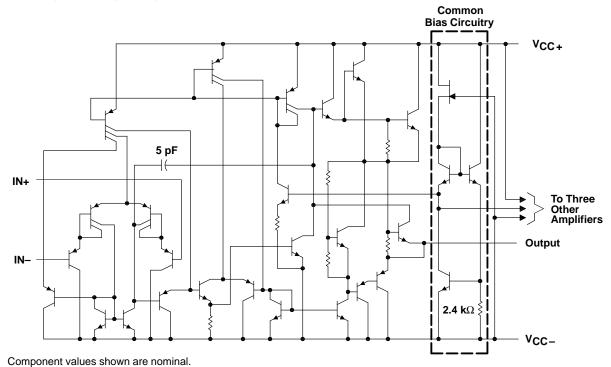


description

The MC3303 and the MC3403 are quadruple operational amplifiers similar in performance to the μ A741 but with several distinct advantages. They are designed to operate from a single supply over a range of voltages from 3 V to 36 V. Operation from split supplies is also possible provided the difference between the two supplies is 3 V to 36 V. The common-mode input range includes the negative supply. Output range is from the negative supply to $V_{CC}-1.5$ V. Quiescent supply currents are less than one-half those of the μ A741.

The MC3303 is characterized for operation from -40° C to 85° C, and the MC3403 is characterized for operation from 0° C to 70° C.

symbol (each amplifier)


AVAILABLE OPTIONS

	Viennav	PACK	AGE
TA	V _{IO} max AT 25°C	SMALL OUTLINE (D)	PLASTIC DIP (N)
0°C to 70°C	10 mV	MC3403D	MC3403N
-40°C to 85°C	8 mV	MC3303D	MC3303N

The D packages are available taped and reeled. Add R suffix to the device type (e.g., MC3403DR).

schematic (each amplifier)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	MC3303	MC3403	UNIT
Supply voltage V _{CC+} (see Note 1)	18	18	V
Supply voltage V _{CC} (see Note 1)	-18	-18	V
Supply voltage V _{CC+} with respect to V _{CC-}	36	36	V
Differential input voltage (see Note 2)	±36	±36	V
Input voltage (see Notes 1 and 3)	±18	±18	V
Continuous total power dissipation	See Dissi	pation Rating T	able
Operating free-air temperature range	- 40 to 85	0 to 70	°C
Storage temperature range	- 65 to 150	- 65 to 150	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260	260	°C

- NOTES: 1. These voltage values are with respect to the midpoint between V_{CC+} and V_{CC-}.
 - 2. Differential voltages are at IN+ with respect to IN-.
 - 3. Neither input must ever be more positive then V_{CC+} or more negative than V_{CC-} .

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	494 mW
N	1150 mW	9.2 mW/°C	736 mW	598 mW

MC3303, MC3403 QUADRUPLE LOW-POWER OPERATIONAL AMPLIFIERS

SLOS101 - FEBRUARY 1979 - REVISED SEPTEMBER 1990

recommended operating conditions

	MIN	MAX	UNIT
Single-supply voltage, V _{CC}	5	30	V
Dual-supply voltage, V _{CC+}	2.5	15	V
Dual-supply voltage, V _{CC} _	-2.5	-15	V

electrical characteristics at specified free-air temperature, V_{CC+} = 14 V, V_{CC-} = 0 V for MC3303, $V_{CC\pm}$ = ± 15 V for MC3403 (unless otherwise noted)

PARAMETER		TEST CONDITIONS!			MC3303			MC3403		UNIT
	PARAMETER	TEST CONDITION	INS	MIN	TYP	MAX	MIN	TYP	MAX	UNII
VIO	Input offset voltage	See Note 4	25°C		2	8		2	10	mV
VIO	input onset voltage	See Note 4	Full range			10			12	IIIV
ανιο	Temperature coefficient of input offset voltage	See Note 4	Full range		10			10		μV/°C
110	Input offset current	See Note 4	25°C		30	75		30	50	nA
ΙΟ	input onset current	See Note 4	Full range			250			200	IIA
αΙΙΟ	Temperture coefficient of input offset current	See Note 4	Full range		50			50		pA/C
I _{IB}	Input bias current	See Note 4	25°C		-0.2	-0.5		-0.2	-0.5	μΑ
IIB	input bias current	See Note 4	Full range			-1			-0.8	μΑ
VICR	Common-mode input voltage range‡		25°C	V _{CC} - to 12	V _{CC} - to 12.5		V _{CC} - to 13	V _{CC} - to 13.5		٧
		$R_L = 10 \text{ k}\Omega$	25°C	12	12.5		±12	±13.5		
Vом	Peak output voltage swing	$R_L = 2 k\Omega$	25°C	10	12		±10	±13		V
		$R_L = 2 k\Omega$	Full range	10			±10			
AVD	Large-signal differential	$V_0 = \pm 10 \text{ V},$	25°C	20	200		20	200		V/mV
, VD	voltage amplification	$R_L = 2 k\Omega$	Full range	15			15			V/111 V
ВОМ	Maximum-output-swing bandwidth	$\begin{split} &VOPP=20\ V,\\ &AVD=1,\\ &THD\leq 5\%,\\ &R_L=2\ k\Omega \end{split}$	25°C		9			9		kHz
B ₁	Unity-gain bandwidth	$V_O = 50 \text{ mV},$ $R_L = 10 \text{ k}\Omega$	25°C		1			1		MHz
φm	Phase margin	$C_L = 200 \text{ pF},$ $R_L = 2 \text{ k}\Omega$	25°C		60°			60°		
rį	Input resistance	f = 20 Hz	25°C	0.3	1		0.3	1		MΩ
r _o	Output resistance	f = 20 Hz	25°C		75			75		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}$ min	25°C	70	90		70	90		dB
ksvs	Supply voltage sensitivity $(\Delta V_{IO}/\Delta V_{CC})$	$V_{CC\pm} = \pm 2.5 \text{ to } \pm 15 \text{ V}$	25°C		30	150		30	150	μV/V
los	Short-circuit output current§		25°C	±10	±30	±45	±10	±30	±45	mA
ICC	Total supply current	No load, See Note 4	25°C		2.8	7		2.8	7	mA

[†] All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified. Full range for T_A is -40°C to 85°C for MC3303, and 0°C to 70°C for MC3403.

[‡] The V_{ICR} limits are directly linked volt-for-volt to supply voltage; the positive limit is 2 V less than V_{CC+}.

[§] Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

NOTE 4: V_{IO} , I_{IO} , I_{IB} , and I_{CC} are defined at $V_{O} = 0$ for MC3403 and $V_{O} = 7$ V for MC3303.

SLOS101 – FEBRUARY 1979 – REVISED SEPTEMBER 1990

electrical characteristics, $V_{CC+} = 5 \text{ V}$, $V_{CC-} = 0 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

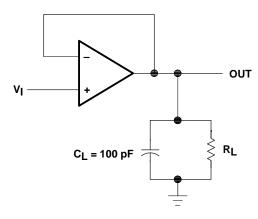
PARAMETER		TEST CONDITIONS†	MC	3303		MC3403				
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
VIO	Input offset voltage	V _O = 2.5 V			10		2	10	mV	
lЮ	Input offset current	V _O = 2.5 V			75		30	50	nA	
I _{IB}	Input bias current	V _O = 2.5 V			-0.5		-0.2	-0.5	pА	
		R _L = 10 kΩ	3.3	3.5		3.3	3.5			
VOM	Peak output voltage swing‡	R _L = 10 k Ω , V _{CC+} = 5 V to 30 V	V _{CC+} -1.7			V _{CC+} -1.7			V	
AVD	Large-signal differential voltage amplification	$V_O = 1.7 \text{ V to } 3.3 \text{ V},$ $R_L = 2 \text{ k}\Omega$	20	200		20	200		V/mV	
ksvs	Supply voltage sensitivity $(\Delta V_{IO}/\Delta V_{CC\pm})$	$V_{CC\pm} = \pm 2.5 \text{ V to } \pm 15 \text{ V}$			150			150	μV/V	
ICC	Supply current	$V_O = 2.5 \text{ V}$, No load		2.5	7		2.5	7	mA	
V _{O1} /V _{O2}	Crosstalk attenuation	f = 1 kHz to 20 kHz		120			120		dB	

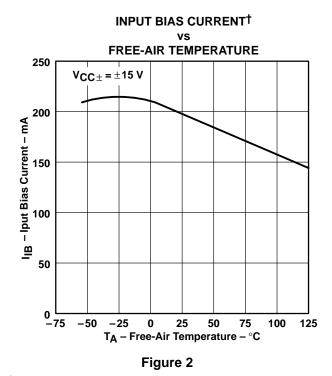
[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified.

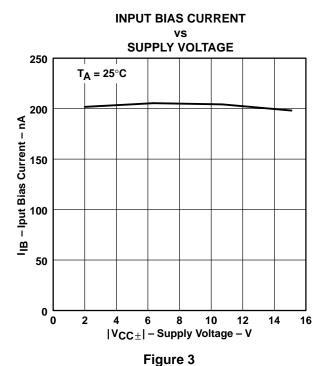
operating characteristics, V_{CC+} = 14 V, V_{CC-} = 0 V for MC3303, V_{CC±} = \pm 15 V for MC3403, T_A = 25°C, A_{VD} = 1 (unless otherwise noted)

	PARAMETER TEST CONDITIONS					MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	$V_{I} = \pm 10 \text{ V},$	C _L = 100 pF,	$R_L = 2 k\Omega$,	See Figure 1		0.6		V/μs
t _r	Rise time						0.35		μs
t _f	Fall time	$\Delta V_O = 50 \text{ mV},$	$C_L = 100 pF$,	$R_L = 10 \text{ k}\Omega$,	See Figure 1		0.35		μs
	Overshoot factor						20%		
	Crossover distortion	$V_{I(PP)} = 30 \text{ mV},$	V _{OPP} = 2 V,	f = 10 kHz			1%		

PARAMETER MEASUREMENT INFORMATION




Figure 1. Unity-Gain Amplifier


[‡] Output will swing essentially to ground.

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
I _{IB}	Input bias current	vs Free-air temperature	2
	input bias current	vs Supply voltage	3
VO(PP)	Maximum peak-to-peak output voltage	vs Supply voltage	4
	Maximum peak-to-peak output voltage	vs Frequency	5
A_{VD}	Large-signal differential voltage amplification	vs Frequency	6
	Large-signal pulse response	vs Time	7

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS[†]

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs

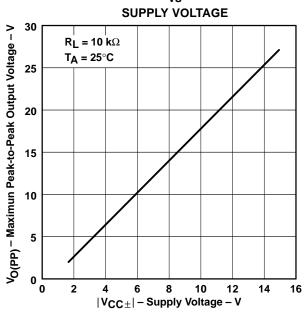


Figure 4

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

Figure 5

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION

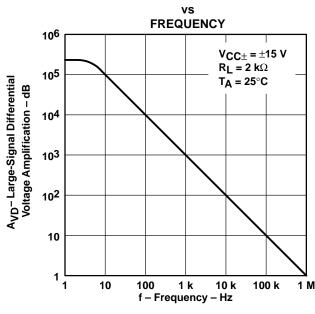


Figure 6

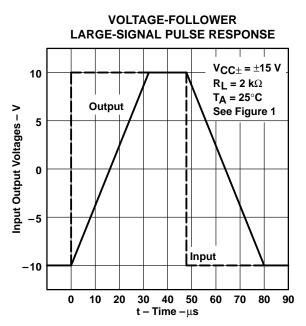


Figure 7

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1995, Texas Instruments Incorporated