

October 2017 DocID029370 Rev 5 1/74

 www.st.com

UM2071
User manual

BlueNRG-1, BlueNRG-2 development kits

Introduction
The BlueNRG-1, BlueNRG-2 devices are low power Bluetooth® smart system on chip, compliant,
respectively, with the Bluetooth® specification and supporting master, slave and simultaneous master-
and-slave roles. Further, BlueNRG-2 supports the Bluetooth Low Energy extended packet length
feature.

The following BlueNRG-1, BlueNRG-2 kits are available:

1. BlueNRG-1 development platform (order code: STEVAL-IDB007V1)
2. BlueNRG-2 development platform (order code: STEVAL-IDB008V1)

The STEVAL-IDB007V1, STEVAL-IDB008V1 also provides a set of hardware resources for a wide
range of application scenarios: sensor data (accelerometer, pressure and temperature sensor), remote
control (buttons and LEDs) and debug message management through USB virtual COM. Three power
options are available (USB only, battery only and external power supply plus USB) for high application
development and testing flexibility.

Figure 1: STEVAL-IDB007V1 development platform

Figure 2: STEVAL-IDB008V1 development platform

Contents UM2071

2/74 DocID029370 Rev 5

Contents

1 Getting started ... 7

1.1 Kit contents ... 7

1.2 System requirements .. 7

1.3 BlueNRG-1, BlueNRG-2 development kits setup 7

2 Hardware description .. 8

2.1 STEVAL-IDB007V1/STEVAL-IDB008V1 boards overview 8

2.2 BlueNRG-1, BlueNRG-2 SoC connections 10

2.3 Power supply ... 12

2.4 Jumpers .. 12

2.5 Sensors ... 13

2.6 Extension connector .. 13

2.7 Push-buttons ... 13

2.8 JTAG connector .. 13

2.9 LEDs ... 13

2.10 STM32L151CBU6 microcontroller ... 13

2.11 Current measurements ... 14

2.12 Hardware setup ... 14

3 BlueNRG-1, BlueNRG-2 Navigator ... 15

3.1 BlueNRG-1 Navigator ‘Demonstration Applications’ 16

3.1.1 BlueNRG-1 Navigator ‘Basic examples’ ... 17

3.1.2 BlueNRG-1 Navigator ‘BLE demonstration and test applications’ ... 18

3.1.3 BlueNRG-1 Navigator ‘Peripherals driver examples’ 19

3.2 BlueNRG-1 Navigator ‘Development Kits’ 19

3.2.1 BlueNRG-1 Navigator ‘Release Notes’ and ‘License’ 20

4 BlueNRG-1 Flasher utility ... 21

4.1 How to run ... 21

4.2 Main user interface window ... 21

4.2.1 Main menu items .. 22

4.2.2 Image file selection ... 22

4.2.3 ‘Image File’ tab ... 23

4.2.4 ‘Device Memory’ tab ... 23

4.2.5 Using BlueNRG-1 Flasher utility with other boards 24

5 BlueNRG-1 radio parameters wizard .. 26

UM2071 Contents

 DocID029370 Rev 5 3/74

5.1 How to run ... 26

5.2 Main user interface window ... 27

6 Programming with BlueNRG-1, BlueNRG-2 system on chip 28

6.1 Software directory structure .. 28

7 BLE beacon demonstration application 30

7.1 BLE Beacon application setup .. 30

7.1.1 Initialization ... 30

7.1.2 Define advertising data ... 30

7.1.3 Entering non-connectable mode .. 30

8 BLE chat demo application ... 32

8.1 Peripheral and central device setup .. 32

8.1.1 Initialization ... 32

8.1.2 Add service and characteristics .. 33

8.1.3 Enter connectable mode... 33

8.1.4 Connection with central device ... 33

9 BLE chat master and slave demo application 35

9.1 BLE chat master and slave roles ... 35

9.1.1 Initialization ... 35

9.1.2 Add service and characteristics .. 36

9.1.3 Start discovery procedure .. 36

9.1.4 Enter connectable mode... 36

9.1.5 Connection with chat master and slave client device 36

10 BLE remote control demo application ... 37

10.1 BLE remote control application setup .. 37

10.1.1 Initialization ... 37

10.1.2 Define advertising data ... 38

10.1.3 Add service and characteristics .. 38

10.1.4 Connection with a BLE Central device ... 38

11 BLE sensor profile demo .. 39

11.1 BlueNRG app for smartphones ... 40

11.2 BLE sensor profile demo: connection with a central device 41

11.2.1 Initialization ... 41

11.2.2 Add service and characteristics .. 41

11.2.3 Enter connectable mode... 42

11.2.4 Connection with central device ... 42

Contents UM2071

4/74 DocID029370 Rev 5

12 BlueNRG-1 sensor profile central demo 43

13 BLE HID/HOGP demonstration application 44

13.1 BLE HID/HOGP mouse demonstration application 44

13.2 BLE HID/HOGP Keyboard demonstration application 44

14 BLE throughput demonstration application 45

14.1 BLE unidirectional throughput scenario ... 45

14.2 BLE bidirectional throughput scenario ... 45

15 BLE notification consumer demonstration application 47

16 BLE security demonstration applications 48

16.1 Peripheral device .. 48

16.2 Central device ... 49

17 BLE power consumption demo application 51

18 BlueNRG-1, BlueNRG-2 peripheral driver examples 52

18.1 ADC examples .. 52

18.2 Flash example ... 52

18.3 GPIO examples ... 53

18.4 I²C examples ... 53

18.5 Micro examples ... 53

18.6 Public Key Accelerator (PKA) demonstration application 54

18.7 RNG examples .. 54

18.8 RTC examples .. 54

18.9 SPI examples .. 55

18.10 SysTick examples ... 56

18.11 Timers examples ... 56

18.12 UART examples .. 58

18.13 WDG examples ... 58

19 Schematic diagrams .. 59

20 Revision history .. 73

UM2071 List of tables

 DocID029370 Rev 5 5/74

List of tables

Table 1: STEVAL-IDB007V1/STEVAL-IDB008V1 board component descriptions 9
Table 2: BlueNRG-1, BlueNRG-2 pins description with board functions .. 10
Table 3: STEVAL-IDB007V1,STEVAL-IDB008V1 kits platforms power supply modes 12
Table 4: STEVAL-IDB007V1,STEVAL-IDB008V1 kits platforms jumpers .. 12
Table 5: BlueNRG-1 Beacon advertising manufacturing data .. 30
Table 6: Serial port configuration .. 32
Table 7: BLE remote advertising data .. 37
Table 8: BLE security demonstration applications security configurations combinations 48
Table 9: Peripheral device advertising local name parameter value .. 49
Table 10: Document revision history .. 73

List of figures UM2071

6/74 DocID029370 Rev 5

List of figures

Figure 1: STEVAL-IDB007V1 development platform ... 1
Figure 2: STEVAL-IDB008V1 development platform ... 1
Figure 3: STEVAL-IDB007V1 board components .. 8
Figure 4: STEVAL-IDB008V1 board components .. 9
Figure 5: BlueNRG-1 Navigator .. 15
Figure 6: BLE Beacon application .. 16
Figure 7: BLE Beacon Flash programming... 17
Figure 8: BLE Beacon documentation .. 17
Figure 9: Basic examples ... 18
Figure 10: BLE demonstration and test applications .. 18
Figure 11: Peripherals driver examples .. 19
Figure 12: STEVAL-IDB007V1 Kit components ... 19
Figure 13: BlueNRG-1 Flasher utility .. 21
Figure 14: BlueNRG-1 Flasher utility main window .. 22
Figure 15: BlueNRG-1 Flasher utility file selection ... 22
Figure 16: BlueNRG-1 Flasher utility image file viewer .. 23
Figure 17: BlueNRG-1 Flasher utility device memory viewer ... 24
Figure 18: BlueNRG-1 Flasher utility changing memory fields ... 24
Figure 19: BlueNRG-1 Flasher utility ‘Comport Setting’ popup .. 25
Figure 20: BlueNRG-1 radio parameters wizard .. 26
Figure 21: BLE chat client ... 34
Figure 22: BLE chat server ... 34
Figure 23: BLE sensor demo GATT database ... 40
Figure 24: BlueNRG sensor app ... 41
Figure 25: STEVAL-IDB007V1 arduino connectors ... 59
Figure 26: STEVAL-IDB007V1 JTAG ... 59
Figure 27: STEVAL-IDB007V1 BlueNRG-1 .. 60
Figure 28: STEVAL-IDB007V1 power management, sensors.. 61
Figure 29: STEVAL-IDB007V1 buttons and LEDs ... 62
Figure 30: STEVAL-IDB007V1 micro ... 63
Figure 31: STEVAL-IDB007V1 USB, level translator, JTAG for micro ... 64
Figure 32: STEVAL-IDB007V1 switch .. 65
Figure 33: STEVAL-IDB008V1 circuit schematic JTAG ... 65
Figure 34: STEVAL-IDB008V1 circuit schematic arduino connectors .. 66
Figure 35: STEVAL-IDB008V1 BlueNRG-2 .. 67
Figure 36: STEVAL-IDB008V1 buttons and leds .. 68
Figure 37: STEVAL-IDB008V1 sensors .. 69
Figure 38: STEVAL-IDB008V1 power management .. 70
Figure 39: STEVAL-IDB008V1 JTAG for micro .. 70
Figure 40: STEVAL-IDB008V1 USB ... 71
Figure 41: STEVAL-IDB008V1 circuit schematic TP1, TP2, TP3 .. 71
Figure 42: STEVAL-IDB008V1 switch .. 71
Figure 43: STEVAL-IDB008V1 micro ... 72
Figure 44: STEVAL-IDB008V1 level translator ... 72

UM2071 Getting started

 DocID029370 Rev 5 7/74

1 Getting started

1.1 Kit contents

The STEVAL-IDB007V1/STEVAL-IDB008V1 kits include respectively:

 1 BlueNRG-1/BlueNRG-2 development platform

 1 2.4 GHz Bluetooth antenna

 1 USB cable

1.2 System requirements

The BlueNRG-1, BlueNRG-2 Navigator, Flasher and Radio Parameters Wizard PC
applications require:

 PC with Intel® or AMD® processor running one of the following Microsoft® operating
systems:

 Windows XP SP3

 Windows Vista

 Windows 7

 At least 128 MB of RAM

 USB ports

 At least 40 MB of available hard disk space

 Adobe Acrobat Reader 6.0 or later.

1.3 BlueNRG-1, BlueNRG-2 development kits setup

The following BlueNRG-1, BlueNRG-2 DK software packages are available:

1. BlueNRG-1_2 DK SW package for BlueNRG-1, BlueNRG-2 BLE stack v2.x family
(STSW-BLUENRG1-DK)

2. BlueNRG-1_V1 DK SW package for BlueNRG-1 BLE stack v1.x family (STSW-
BNRG_V1-DK)

After downloading the selected software package (STSW-BLUENRG1-DK or STSW-
BNRG_V1-DK) from www.st.com, extract BlueNRG-1_2_DK-x.x.x-Setup.zip or BlueNRG-
1_V1_DK-x.x.x-Setup.zip contents to a temporary directory, launch BlueNRG-1_2-DK-
x.x.x-Setup.exe or BlueNRG-1_V1-DK-x.x.x-Setup.exe and follow the on-screen
instructions.

EWARM Compiler 7.70 or later is required for building the
BlueNRG1_2_DK_x.x.x, BlueNRG1_V1_DK_x.x.x demonstration applications.

Keil MDK-ARM and Atollic-True Studio toolchains are also supported.

Hardware description UM2071

8/74 DocID029370 Rev 5

2 Hardware description

2.1 STEVAL-IDB007V1/STEVAL-IDB008V1 boards overview

The BlueNRG-1/BlueNRG-2 devices in the STEVAL-IDB007V1/STEVAL-IDB008V1
development kits lets you experiment with BlueNRG-1/BlueNRG-2 system on chip
functions. They feature:

 Bluetooth® SMART board based on the BlueNRG-1/BlueNRG-2 Bluetooth low energy
system on chip

 Associated development kit SW package including firmware and documentation

 Up to +8 dBm available output power (at antenna connector)

 Excellent receiver sensitivity (-88 dBm)

 Very low power consumption: 7.7 mA RX and 8.3 mA TX at -2 dBm

 Bluetooth® low energy compliant, supports master, slave and simultaneous master-
and-slave roles

 Integrated balun which integrates a matching network and harmonics filter

 SMA connector for antenna or measuring equipment

 3 user LEDs

 2 user buttons

 3D digital accelerometer and 3D digital gyroscope

 MEMS pressure sensor with embedded temperature sensor

 Battery holder

 JTAG debug connector

 USB to serial bridge for providing I/O channel with the BlueNRG-1/BlueNRG-2 device

 Jumper for measuring current for BlueNRG-1/BlueNRG-2 only

 RoHS compliant

The following figure and table describe physical sections of the board.

Figure 3: STEVAL-IDB007V1 board components

UM2071 Hardware description

 DocID029370 Rev 5 9/74

Figure 4: STEVAL-IDB008V1 board components

Table 1: STEVAL-IDB007V1/STEVAL-IDB008V1 board component descriptions

Region Description

A
BlueNRG-1 SoC on STEVAL-IDB007V1

BlueNRG-2 SoC on STEVAL-IDB008V1

C Micro USB connector for power supply and I/O

O JTAG connector

M RESET button

N two USER buttons

H LPS25HB MEMS pressure sensor with embedded temperature

I LSM6DS3 3D digital accelerometer and 3D digital gyroscope

G PWR LED

P three user LEDs

back of the PCB battery holder for two AAA batteries

J, L Two rows of Arduino-compliant connectors

S Integrated balun with matching network and harmonics filter

Q
STM32L151CBU6 48-pin microcontroller (USB to serial bridge for I/O channel to
PC communication)(1)

R ST2378E level translator to adapt voltage level between STM32 and BlueNRG-1

T
16 MHz High Speed Crystal on STEVAL-IDB007V1

32 MHz High Speed Crystal on STEVAL-IDB008V1

Notes:

(1)STM32 is not intended to be programmed by users

Hardware description UM2071

10/74 DocID029370 Rev 5

2.2 BlueNRG-1, BlueNRG-2 SoC connections

The BlueNRG-1, BlueNRG-2 very low power Bluetooth low energy (BLE) single-mode
system on chip (Figure 3: "STEVAL-IDB007V1 board components" – region A / Figure 4:
"STEVAL-IDB008V1 board components" - region A) have respectively 160 KB, 256 KB of
Flash, 24 KB of RAM, a 32-bit core ARM cortex-M0 processor and several peripherals
(ADC, GPIOs, I²C, SPI, Timers, UART, WDG and RTC).

The microcontroller is connected to various components such as buttons, LEDs and
sensors. The following table describes the microcontroller pin functions.

Table 2: BlueNRG-1, BlueNRG-2 pins description with board functions

Pin name
Pin
N°

Board function

LED Micro Button
Pressure
sensor

3D
accelerometer
and gyroscope

JTAG
Arduino connectors

CN1 CN2 CN3 CN4

DIO10 1

JTMS-
SWTDI

O

DIO9 2

JTCK-
SWTCK

DIO8 3

TXD
(PA2)

pin 1

IO8

pin
2

TX

DIO7 4 DL2

pin 2

IO9

pin
6

SCL

DIO6 5 DL1

pin
7

IO6

pin
5

SD
A

VBAT3 6

DIO5 7

SDA

PUSH2
button

pin 9

SDA

DIO4 8

SCL

pin 10

SCL

DIO3 9

SDO/SA0

pin 5

MISO

pin
6

IO5

DIO2 10

SDA

pin 4

MOSI

pin
5

IO4

DIO1 11

CS
JTAG-
TDO

pin 3

CS

DIO0 12

SCL
JTAG-

TDI

pin 6

SCK

pin
4

IO3

ANATEST0/
DIO14

13 DL3

pin
4

AD3

ANATEST1 14

ANATEST2 15

UM2071 Hardware description

 DocID029370 Rev 5 11/74

Pin name
Pin
N°

Board function

LED Micro Button
Pressure
sensor

3D
accelerometer
and gyroscope

JTAG
Arduino connectors

CN1 CN2 CN3 CN4

ANATEST3 16

FXTAL1 17

FXTAL0 18

VBAT2 19

RF1 20

RF0 21

SXTAL1 22

SXTAL0 23

VBAT1 24

RESET 25

RESE
T

RESET

RESET

pin 3

NRS
T

pin
8

IO7

SMPSFILT1 26

SMPSFILT2 27

VDD1V2 28

DIO13 29

PUSH1

pin
3

AD2

DIO12 30

INT1

pin
1

AD0

FTEST 31

DIO11 32

RXD

PA3

pin
1

RX

pin
3

IO2

pin
2

AD1

The board section labeled respectively BlueNRG-1, BlueNRG-2 (Figure 3: "STEVAL-
IDB007V1 board components", Figure 4: "STEVAL-IDB008V1 board components" – region
B) includes the following main components:

 BlueNRG-1/BlueNRG-2 low power system on chip (in a QFN32 package)

 High frequency 16 MHz crystal on STEVAL-IDB007V1 and 32 MHz crystal on
STEVAL-IDB008V1

 Low frequency 32 kHz crystal for the lowest power consumption

 Integrated balun which integrates a matching network and harmonics filter

 SMA connector

For more details, see Figure 27: "STEVAL-IDB007V1 BlueNRG-1" and Figure 35:
"STEVAL-IDB008V1 BlueNRG-2".

Hardware description UM2071

12/74 DocID029370 Rev 5

2.3 Power supply

Green LED DL4 (Figure 3: "STEVAL-IDB007V1 board components", Figure 4: "STEVAL-
IDB008V1 board components" – region G) signals the board is being powered, either via:

 micro USB connector CN5 (Figure 3: "STEVAL-IDB007V1 board components", Figure
4: "STEVAL-IDB008V1 board components" – region C)

 two AAA batteries (region F)

 an external DC power supply plus micro USB connector

The following table describes the power supply modes available on the STEVAL-
IDB007V1, STEVAL-IDB008V1 boards and corresponding jumper settings.

Table 3: STEVAL-IDB007V1,STEVAL-IDB008V1 kits platforms power supply modes

Power
supply mode

JP1 JP2 Comment

1 - USB Fitted: 1-2 Fitted: 2-3
USB supply through connector CN5 (Figure 3:
"STEVAL-IDB007V1 board components", Figure 4:
"STEVAL-IDB008V1 board components" – region C)

2 - Battery Fitted: 2-3 Fitted: 1-2
The supply voltage must be provided through battery
pins (region F).

3 - Combo Fitted: 1-2 Optional
USB supply through connector CN5 for STM32L1; JP2
pin 2 external power for BlueNRG-1, BlueNRG-2

2.4 Jumpers

The following jumpers are available:

Table 4: STEVAL-IDB007V1,STEVAL-IDB008V1 kits platforms jumpers

Jumper Description

JP1
1-2: to provide power from USB (JP2: 2-3)

2-3: to provide power from battery holder (JP2: 1-2)

JP2

1-2: to provide power from battery holder (JP1: 2-3)

2-3: to provide power from USB (JP1: 1-2)

JP2 pin 2 to VDD to provide external power supply to BlueNRG-1, BlueNRG-2 (JP1: 1-2)

JP3
pin 1 and 2 UART RX and TX of MCU

pin 3 GND

JP4
Fitted: to provide VBLUE to BlueNRG-1, BlueNRG-2. It can be used also for current
measurement.

JP5
Fitted: TEST pin to VBLUE

Not fitted: TEST pin to GND

UM2071 Hardware description

 DocID029370 Rev 5 13/74

2.5 Sensors

The following sensors are available on the platform:

1. An LPS25HB (Figure 3: "STEVAL-IDB007V1 board components", Figure 4: "STEVAL-
IDB008V1 board components" – region H) is a piezoresistive absolute pressure
sensor which functions as a digital output barometer. The device comprises a sensing
element and an IC interface which communicates through I²C from the sensing
element to the application.

2. An LSM6DS3 3D (region I) digital accelerometer and 3D digital gyroscope with
embedded temperature sensor which communicates via SPI interface. One line for
interrupt is also connected.

2.6 Extension connector

BlueNRG-1, BlueNRG-2 signal test points are shared on two Arduino-compliant connector
rows: CN1, CN3 (Figure 3: "STEVAL-IDB007V1 board components", Figure 4: "STEVAL-
IDB008V1 board components" – region J) and CN2, CN4 (region L). See Table 2:
"BlueNRG-1, BlueNRG-2 pins description with board functions".

2.7 Push-buttons

The board has one user button to reset the microcontroller (Figure 3: "STEVAL-IDB007V1
board components", Figure 4: "STEVAL-IDB008V1 board components" – region M) and
two further buttons for application purposes (region N).

2.8 JTAG connector

A JTAG connector (Figure 3: "STEVAL-IDB007V1 board components", Figure 4: "STEVAL-
IDB008V1 board components" – region O) allows BlueNRG-1, BlueNRG-2 microcontroller
programming and debugging with an in-circuit debugger and programmer such as ST-
LINK/V2.

Only SWD mode is supported

2.9 LEDs

LEDs DL1 (yellow), DL2 (red), DL3 (blue) and DL4 (green, power LED) are available on the
board (Figure 3: "STEVAL-IDB007V1 board components", Figure 4: "STEVAL-IDB008V1
board components" – regions G and P).

2.10 STM32L151CBU6 microcontroller

The most important feature of the STM32L151CBU6 48-pin microcontroller (Figure 3:
"STEVAL-IDB007V1 board components", Figure 4: "STEVAL-IDB008V1 board
components" – regions Q) is the USB to serial bridge providing an I/O channel with the
BlueNRG-1, BlueNRG-2 device.

The microcontroller is connected to the BlueNRG-1, BlueNRG-2 device through an
ST2378E level translator (region R).

Hardware description UM2071

14/74 DocID029370 Rev 5

The STM32L microcontroller on the board is not intended to be programmed by
users. ST provides a pre-programmed firmware image for the sole purpose of
interfacing BlueNRG-1, BlueNRG-2 to a USB host device (e.g., a PC).

2.11 Current measurements

To monitor the power consumption of the BlueNRG-1, BlueNRG-2 only, remove the jumper
from JP4 and insert an ammeter between pins 1 and 2 of the connector (when the power is
ON, remove the USB connection).

Since power consumption of the BlueNRG-1, BlueNRG-2 are usually very low, an accurate
instrument in the range of few micro amps is recommended.

2.12 Hardware setup

1. Connect an antenna to the SMA connector
2. Configure the board to USB power supply mode as per Table 3: "STEVAL-

IDB007V1,STEVAL-IDB008V1 kits platforms power supply modes"
3. Connect the board to a PC via USB cable (connector CN5)
4. Verify the power indication LED DL4 is on.

UM2071 BlueNRG-1, BlueNRG-2 Navigator

 DocID029370 Rev 5 15/74

3 BlueNRG-1, BlueNRG-2 Navigator

BlueNRG-1, BlueNRG-2 Navigator are user friendly GUI which lets you select and run
demonstration applications easily, without requiring any extra hardware. With it, you can
access the following DK software package components:

 BlueNRG-1, BlueNRG-2 Bluetooth low energy (BLE) demonstration applications

 BlueNRG-1, BlueNRG-2 peripheral driver examples

 BlueNRG-1, BlueNRG-2 development kits

 release notes

 license files

With BlueNRG-1 DK Navigator, you can directly download and run the selected prebuilt
application binary image (BLE examples or peripheral driver example) on the BlueNRG-1,
BlueNRG-2 platform without a JTAG interface.

The interface gives demo descriptions and access to board configurations and source code
if needed.

User can run the utility through the BlueNRG-1 and BlueNRG-2 Navigator icon under:

Start → STMicroelectronics → BlueNRG -1_2 DK X.X.X → BlueNRG-1 Navigator,
BlueNRG-2 Navigator or Start → STMicroelectronics → BlueNRG -1_V1 DK X.X.X →
BlueNRG-1 Navigator.

Figure 5: BlueNRG-1 Navigator

BlueNRG-1 Navigator and BlueNRG-2 Navigator are two instances of same
application tailored for the specific selected device, in order to select the related
available resources. Next sections focus on BlueNRG-1 Navigator, but same
concepts are also valid for BlueNRG-2 Navigator.

BlueNRG-1, BlueNRG-2 Navigator UM2071

16/74 DocID029370 Rev 5

3.1 BlueNRG-1 Navigator ‘Demonstration Applications’

You can navigate the menus for the reference/demo application you want to launch. For
each application, the following information is provided:

 Application settings (if applicable)

 Application description

 Application hardware related information (e.g., LED signals, jumper configurations,
etc.)

The following functions are also available for each application:

 Flash: to automatically download and run the available prebuilt binary file to a
BlueNRG-1 platform connected to a PC USB port.

 Doc: to display application documentation (html format)

 Project: to open the project folder with application headers, source and project files.

The figure below shows you how to run the BLE Beacon demo application; the other
demos function similarly.

Figure 6: BLE Beacon application

When a BlueNRG-1 platform is connected to your PC USB port, you can press the “Flash &
Run” tab on the selected application window to download and run the available prebuilt
application binary image on the BlueNRG-1 platform.

UM2071 BlueNRG-1, BlueNRG-2 Navigator

 DocID029370 Rev 5 17/74

Figure 7: BLE Beacon Flash programming

Selecting the “Doc” tab opens the relative html documentation.

Figure 8: BLE Beacon documentation

3.1.1 BlueNRG-1 Navigator ‘Basic examples’

This page lists some basic sample applications for the BlueNRG-1 device to verify that
BlueNRG-1 device is alive as well as the device sleep and wakeup modes.

BlueNRG-1, BlueNRG-2 Navigator UM2071

18/74 DocID029370 Rev 5

Figure 9: Basic examples

3.1.2 BlueNRG-1 Navigator ‘BLE demonstration and test applications’

This page lists all the available Bluetooth low energy (BLE) demonstration applications in
the DK software package. These applications provide usage examples of the BLE stack
features for the BlueNRG-1 device.

Figure 10: BLE demonstration and test applications

UM2071 BlueNRG-1, BlueNRG-2 Navigator

 DocID029370 Rev 5 19/74

3.1.3 BlueNRG-1 Navigator ‘Peripherals driver examples’

This page lists the available BlueNRG-1 peripherals and corresponding test applications to
work with certain features specific to the selected BlueNRG-1 peripheral.

Figure 11: Peripherals driver examples

3.2 BlueNRG-1 Navigator ‘Development Kits’

This window displays the available BlueNRG-1 DK Kit platforms and corresponding
resources. When you hovers the mouse pointer over a specific item, the related component
is highlighted on the board.

Figure 12: STEVAL-IDB007V1 Kit components

BlueNRG-1, BlueNRG-2 Navigator UM2071

20/74 DocID029370 Rev 5

3.2.1 BlueNRG-1 Navigator ‘Release Notes’ and ‘License’

As their name suggests, these pages display the DK SW package Release Notes (html
format) and the DK software package license file, respectively.

UM2071 BlueNRG-1 Flasher utility

 DocID029370 Rev 5 21/74

4 BlueNRG-1 Flasher utility

The BlueNRG-1 Flasher utility allows BlueNRG-1, BlueNRG-2 programming using the
UART bootloader.

4.1 How to run

User can run this utility by clicking on the BlueNRG-1 Flasher icon under: Start →
STMicroelectronics → BlueNRG -1_2 DK X.X.X → BlueNRG1 Flasher or Start →
STMicroelectronics → BlueNRG -1_V1 DK X.X.X → BlueNRG1 Flasher

Figure 13: BlueNRG-1 Flasher utility

4.2 Main user interface window

In the upper section of the BlueNRG-1 Flasher – Utility main window, you can:

 select the image file (‘Select file’ button)

 choose the flashing address (‘Flash from’ text input bar, only enabled for .bin files)

 select the COM port to be used to interface the device (‘Port’ dropdown list)

The BlueNRG-1 device memory is read when the associated COM port is opened.

The serial baudrate used for BlueNRG-1, BlueNRG-2 evaluation board is 460800 bps.

BlueNRG-1 Flasher utility UM2071

22/74 DocID029370 Rev 5

Figure 14: BlueNRG-1 Flasher utility main window

4.2.1 Main menu items

From the ‘File’ menu, you can:

 Load an existing .bin or .hex (Intel extended) file.

 Save the current memory image in a .bin file. The start address and the size of the
memory section to be saved to file are selectable from the ‘Device Memory’ tab.

 Close the application.

From the ‘Tools’ menu, you can mass erase all the device Flash memory.

4.2.2 Image file selection

Use the ‘Select file’ button on the main page (or the File>Load menu) to load an existing
.bin or .hex file. The full path of the selected file appears next to the button and the ‘Flash’
becomes active.

Figure 15: BlueNRG-1 Flasher utility file selection

UM2071 BlueNRG-1 Flasher utility

 DocID029370 Rev 5 23/74

By default, the ‘Mass erase’ option beside the ‘Flash’ button is not checked, and only the
required memory pages are erased and written with the file content. When this option is
checked, the memory flash phase is preceded by a full mass erase.

The ‘Verify’ option forces a check to ensure that the memory content has been written
correctly.

Check the ‘Update memory table’ option to update the ‘Device Memory’ table after the
flashing operation. This option is automatically checked when the ‘Verify’ checkbox is
selected.

4.2.3 ‘Image File’ tab

The selected file name, size and parsed contents to be flashed to device memory can be
viewed in the ‘Image File’ tab.

Figure 16: BlueNRG-1 Flasher utility image file viewer

4.2.4 ‘Device Memory’ tab

Select this tab to view the memory contents of a connected device.

BlueNRG-1 Flasher utility UM2071

24/74 DocID029370 Rev 5

Figure 17: BlueNRG-1 Flasher utility device memory viewer

Click the ‘Read’ button to transfer the memory segment defined by ‘Start Address and
‘Size’ into the table.

The first column gives the base address of the following 16 bytes in a row (e.g., row
0x10040050, column 4 holds the hexadecimal byte value at 0x10040054.

You can change byte values by double-clicking a cell and entering a new hexadecimal
value; edited bytes appear in red.

Click the ‘Write’ button to flash the entire page with the new byte values into device
memory.

Figure 18: BlueNRG-1 Flasher utility changing memory fields

4.2.5 Using BlueNRG-1 Flasher utility with other boards

The BlueNRG-1 Flasher utility automatically detects BlueNRG-1, BlueNRG-2 evaluation
boards like STEVAL-IDB007V1, STEVAL-IDB008V1 and uses an auxiliary STM32 to
(driven by the GUI) to reset the BlueNRG-1, BlueNRG-2 and put it into bootloader mode.

The application also works with custom boards providing simple UART access to the
BlueNRG-1, BlueNRG-2 device, but you must put the device in bootloader mode manually.
Upon the selection of any non-STEVAL COM port, the following popup appears.

UM2071 BlueNRG-1 Flasher utility

 DocID029370 Rev 5 25/74

Figure 19: BlueNRG-1 Flasher utility ‘Comport Setting’ popup

When this popup appears, set the BlueNRG-1, BlueNRG-2 pin DIO7 high and reset the
BlueNRG-1, BlueNRG-2 device (keeping the DIO7 high); the device should now be in
bootloader mode.

You can also set a preferred Baudrate for the UART in the popup window and then press
OK to return to the GUI.

Avoid resetting the device while using the BlueNRG-1 Flasher utility unless the
Comport Setting popup is active. If the device is reset, you must toggle the COM
port to use the Flasher utility again.

BlueNRG-1 radio parameters wizard UM2071

26/74 DocID029370 Rev 5

5 BlueNRG-1 radio parameters wizard

The BlueNRG-1 Radio Parameters Wizard is a PC application which allows to define the
proper values required for the correct BlueNRG-1, BlueNRG-2 BLE radio initialization,
based on the specific user application scenario. As consequence of the user choices, a
configuration header file (*_config.h) is generated: this file must be used on the user
demonstration application folder.

The BlueNRG-1 radio parameters wizard is provided only on BlueNRG-1_2 DK
SW package (STSW-BLUENRG1-DK) supporting BLE stack v2.x family.

5.1 How to run

User can run this utility by clicking on the BlueNRG-1 Radio Init Wizard icon under: Start →
STMicroelectronics → BlueNRG -1_2 DK X.X.X

Figure 20: BlueNRG-1 radio parameters wizard

UM2071 BlueNRG-1 radio parameters wizard

 DocID029370 Rev 5 27/74

5.2 Main user interface window

In the left section of the BlueNRG-1 Radio Initialization Parameters Wizard Utility, user can
select the following topics allowing to define the specific radio initialization parameters
based on the specific BLE application requirements:

1. General Configuration
2. Radio Configuration
3. Service Configuration
4. Connection Configuration
5. Security DataBase configuration
6. OTA configuration
7. Privacy configuration
8. Overview
9. Output

 Refer to the BlueNRG-1 Radio Parameters Wizard documentation available within
BlueNRG-1_2 DK SW package for more details about each provided configuration section.

Programming with BlueNRG-1, BlueNRG-2
system on chip

UM2071

28/74 DocID029370 Rev 5

6 Programming with BlueNRG-1, BlueNRG-2 system
on chip

The BlueNRG-1, BlueNRG-2 Bluetooth low energy (BLE) stack is provided as a binary
library. A set of APIs to control BLE functionality. Some callbacks are also provided for user
applications to handle BLE stack events. The user is simply requested to link this binary
library to his or her application and use the relevant APIs to access BLE functions and
complete the stack event callbacks to manage responses according to application
requirements.

A set of software driver APIs is also included for accessing the BlueNRG-1, BlueNRG-2
SoC peripherals and resources (ADC, GPIO, I²C, MFTX, Micro, RTC, SPI, SysTick, UART
and WDG).

The development kit software includes sample code demonstrating how to configure
BlueNRG-1, BlueNRG-2 and use the device peripherals and BLE APIs and event
callbacks. Documentation on the BLE APIs, callbacks, and peripheral drivers are provided
in separate documents.

6.1 Software directory structure

The BlueNRG-1, BlueNRG-2 DK software packages files are organized in the following
main directories:

 Application: containing BlueNRG-1, BlueNRG-2 Navigator, Flasher and Radio
Parameters Wizard PC applications.

 Doc: with doxygen BLE APIs and events, BlueNRG-1, BlueNRG-2 peripheral drivers,
BLE demo applications, BlueNRG-1, BlueNRG-2 Peripheral examples, BlueNRG-1,
BlueNRG-2 SDK and HAL driver documentation, DK release notes and license file.

 Firmware: with prebuilt binary BLE and peripheral driver sample applications.

 Library

 Bluetooth LE: Bluetooth low energy stack binary library and all the definitions of
stack APIs, stack events callbacks and constants. Over-the-air Bluetooth low
energy firmware upgrade support if applicable.

 BlueNRG1_Periph_Driver: BlueNRG-1, BlueNRG-2 drivers for device
peripherals (ADC, clock, DMA, Flash, GPIO, I²C, timers, RTC, SPI, UARR and
watchdog).

 CMSIS: BlueNRG-1 CMSIS files.

 SDK_Eval_BlueNRG1: SDK drivers providing an API interface to the BlueNRG-
1, BlueNRG-2 platform hardware resources (LEDs, buttons, sensors, I/O
channel).

 HAL: Hardware abstraction level APIs for abstracting certain BlueNRG-1
hardware features (sleep modes, clock based on SysTick, etc.).

 Project

 BLE_Examples: Bluetooth low energy demonstration application including
Headers, source files and EWARM, Keil and Atollic project files.

 BlueNRG1_Periph_Examples: with sample applications for the BlueNRG-1,
BlueNRG-2 peripherals and hardware resources, including Headers, source files
and project files.

 Utility: contains some utilities

UM2071 Programming with BlueNRG-1, BlueNRG-2
system on chip

 DocID029370 Rev 5 29/74

The selection between BlueNRG-1, BlueNRG-2 device is done at compile time
using a specific define value BLUENRG2_DEVICE for selecting BlueNRG-2
device. Default configuration (no define value) selects BlueNRG-1 device.

BlueNRG-1_V1 DK SW package framework refers only BlueNRG-1 device.

BLE beacon demonstration application UM2071

30/74 DocID029370 Rev 5

7 BLE beacon demonstration application

The BLE beacon demo is supported by the BlueNRG-1, BlueNRG-2 development platforms
(STEVAL-IDB007V1, STEVAL-IDB008V1). It demonstrates how to configure a BlueNRG-1
device to advertise specific manufacturing data and allow another BLE device to determine
whether it is in BLE beacon device range.

7.1 BLE Beacon application setup

This section describes how to configure a BLE device to act as a beacon device.

7.1.1 Initialization

The BLE stack must be correctly initialized thus:

aci_gatt_init();

aci_gap_init(GAP_PERIPHERAL_ROLE, 0, 0x08, &service_handle, &dev_name_char_handle,

&appearance_char_handle);

See the BLE stack documentation for more information on these and following commands.

7.1.2 Define advertising data

The BLE Beacon application advertises the following manufacturing data:

Table 5: BlueNRG-1 Beacon advertising manufacturing data

Data field Description Notes

Company identifier
code

SIG company identifier(1) Default is 0x0030 (STMicroelectronics)

ID Beacon ID Fixed value

Location UUID Beacons UUID
Used to distinguish specific beacons

from others

Major number Identifier for a group of beacons Used to group a related set of beacons

Minor number Identifier for a single beacon Used to identify a single beacon

Tx Power 2's complement of the Tx power
Used to establish how far you are from

device

Notes:

(1)available at: https://www.bluetooth.org/en-us/specification/assigned-numbers/company-identifiers

7.1.3 Entering non-connectable mode

The BLE Beacon device uses the GAP API command to enter non-connectable mode thus:

aci_gap_set_discoverable(ADV_NONCONN_IND, 160, 160, PUBLIC_ADDR,

 NO_WHITE_LIST_USE,0, NULL, 0, NULL, 0, 0);

To advertise the specific selected manufacturer data, the BLE Beacon application can use
the following GAP APIs:

/* Remove TX power level field from the advertising data: it is necessary to

have enough space for the beacon manufacturing data */

aci_gap_delete_ad_type(AD_TYPE_TX_POWER_LEVEL);

/* Define the beacon manufacturing payload */

UM2071 BLE beacon demonstration application

 DocID029370 Rev 5 31/74

uint8_t manuf_data[] = {26, AD_TYPE_MANUFACTURER_SPECIFIC_DATA, 0x30, 0x00,

//Company identifier code (Default is 0x0030 - STMicroelectronics) 0x02,// ID

0x15,//Length of the remaining payload

0xE2, 0x0A, 0x39, 0xF4, 0x73, 0xF5, 0x4B, 0xC4, //Location UUID

0xA1, 0x2F, 0x17, 0xD1, 0xAD, 0x07, 0xA9, 0x61,

0x00, 0x02, // Major number

0x00, 0x02, // Minor number

0xC8//2's complement of the Tx power (-56dB)};

};

/* Set the beacon manufacturing data on the advertising packet */

aci_gap_update_adv_data(27, manuf_data);

BLE chat demo application UM2071

32/74 DocID029370 Rev 5

8 BLE chat demo application

The BLE chat demo (server and client roles) is supported on the BlueNRG-1, BlueNRG-2
development platforms (STEVAL-IDB007V1, STEVAL-IDB008V1). It implements simple
two-way communication between two BLE devices, demonstrating point-to-point wireless
communication using the BlueNRG-1 product.

This demo application exposes a single chat service with the following (20 byte max.)
characteristic values:

 The TX characteristic, with which the client can enable notifications; when the server
has data to be sent, it sends notifications with the value of the TX characteristic.

 The RX characteristic, is a writable characteristic; when the client has data to be sent
to the server, it writes a value in this characteristic.

There are two device roles which can be selected through the specific project workspace:

 The Server that exposes the chat service (BLE peripheral device).

 The Client that uses the chat service (BLE central device).

The application requires two devices to be programmed with respective server and client
roles. These must be connected to a PC via USB with an open serial terminal for each
device, with the following configurations:

Table 6: Serial port configuration

Parameter value

Baudrate 115200 bit/s

Data bits 8

Parity bits None

Stop bits 1

The application listens for keys typed in one device terminal and sends them to the remote
device when the return key is pressed; the remote device then outputs the received RF
messages to the serial port. Therefore, anything typed in one terminal becomes visible in
the other.

8.1 Peripheral and central device setup

This section describes how two BLE chat devices (server-peripheral and client-central)
interact with each other in order to set up a point-to-point wireless chat.

BLE device must first be set up on both devices by sending a series of API commands to
the processor.

8.1.1 Initialization

The BLE stack must be correctly initialized before establishing a connection with another

BLE device. This is done with aci_gatt_init() and aci_gap_init() APIs:

aci_gatt_init();

BLE Chat server role:

aci_gap_init(GAP_PERIPHERAL_ROLE, 0, 0x08, &service_handle, &dev_name_char_handle,

&appearance_char_handle);

BLE Chat client role:

UM2071 BLE chat demo application

 DocID029370 Rev 5 33/74

aci_gap_init(GAP_CENTRAL_ROLE, 0, 0x08, &service_handle, &dev_name_char_handle,

&appearance_char_handle);

Peripheral and central BLE roles must be specified in the aci_gap_init() command.

See the BLE stack API documentation for more information on these and following
commands.

8.1.2 Add service and characteristics

The chat service is added to the BLE chat server device via:

aci_gatt_add_service(UUID_TYPE_128, &service_uuid, PRIMARY_SERVICE,

7,&chatServHandle);

Where service_uuid is the private service 128-bit UUID allocated for the chat service

(Primary service). The command returns the service handle in chatServHandle. The TX

characteristic is added using the following command on the BLE Chat server device:

aci_gatt_add_char(chatServHandle, UUID_TYPE_128, &charUuidTX, 20, CHAR_PROP_NOTIFY,

ATTR_PERMISSION_NONE, 0, 16, 1, &TXCharHandle);

Where charUuidTX is the private characteristic 128-bit UUID allocated for the TX

characteristic (notify property). The characteristic handle is returned on the

TXCharHandle variable.

The RX characteristic is added using the following command on the BLE Chat server
device:

aci_gatt_add_char(chatServHandle, UUID_TYPE_128, &charUuidRX, 20,

CHAR_PROP_WRITE|CHAR_PROP_WRITE_WITHOUT_RESP, ATTR_PERMISSION_NONE,

GATT_SERVER_ATTR_WRITE,16, 1, &RXCharHandle);

Where charUuidRX is the private characteristic 128-bit UUID allocated for the RX

characteristic (write property). The characteristic handle is returned on the RXCharHandle

variable.

See the BLE stack API documentation for more information on these and following
commands.

8.1.3 Enter connectable mode

The server device uses GAP API commands to enter the general discoverable mode:

aci_gap_set_discoverable(ADV_IND, 0, 0, PUBLIC_ADDR, NO_WHITE_LIST_USE,8,local_name,

0, NULL, 0, 0);

The local_name parameter contains the name presented in advertising data, as per

Bluetooth core specification version 4.2, Vol. 3, Part C, Ch. 11.

8.1.4 Connection with central device

Once the server device is discoverable by the BLE chat client device, the client device uses

aci_gap_create_connection()to connect with the BLE chat server device:

aci_gap_create_connection(0x4000, 0x4000, PUBLIC_ADDR, bdaddr, PUBLIC_ADDR, 40, 40,

0, 60, 2000 , 2000);

Where bdaddr is the peer address of the client device.

Once the two devices are connected, you can set up corresponding serial terminals and
type messages in either of them. The typed characters are stored in two respective buffers
and when the return key is pressed:

 on the BLE chat server device, the typed characters are sent to the BLE chat client
device by notifying the previously added TX characteristic (after notifications are
enabled) with:

BLE chat demo application UM2071

34/74 DocID029370 Rev 5

aci_gatt_update_char_value(chatServHandle,TXCharHandle,0,len, (uint8_t*)cmd+j);

 on the BLE chat client device, the typed characters are sent to the BLE chat server
device by writing the previously added RX characteristic with:

aci_gatt_write_without_resp(connection_handle, rx_handle+1, len, (uint8_t *)cmd+j);

Where connection_handle is the handle returned upon connection as a parameter of

the connection complete event, rx_handle is the RX characteristic handle discovered by the
client device.

Once these API commands have been sent, the values of the TX and RX characteristics
are displayed on the serial terminals.

Figure 21: BLE chat client

Figure 22: BLE chat server

UM2071 BLE chat master and slave demo application

 DocID029370 Rev 5 35/74

9 BLE chat master and slave demo application

The BLE chat master and slave demo is supported on the BlueNRG-1, BlueNRG-2
development platforms (STEVAL-IDB007V1, STEVAL-IDB008V1). It demonstrates simple
point-to-point wireless communication using a single application which configures the chat
client and server roles at runtime.

The new chat demo application configures a BLE device as central or peripheral using the
API:

aci_gap_init(GAP_CENTRAL_ROLE|GAP_PERIPHERAL_ROLE, 0, 0x07, &service_handle,

&dev_name_char_handle, &appearance_char_handle);

It then initiates a discovery procedure for another BLE device configured with the same
chat master and slave application image.

If such a device is found within a random interval, it starts a connection procedure and
waits until a connection is established. If the discovery procedure time expires without
finding another chat master and slave device, the device enters discovery mode and waits
for another chat master and slave device to discover and connect to it.

When connection is established, the client and server roles are defined and the chat
communication channel can be used.

This demo application exposes a single chat service with the following (20 byte max.)
characteristic values:

 The TX characteristic, with which the client can enable notifications; when the server
has data to be sent, it sends notifications with the value of the TX characteristic.

 The RX characteristic, is a writable characteristic; when the client has data to be sent
to the server, it writes a value in this characteristic.

The application requires two devices to be programmed with the same application, with the
server and client roles defined at runtime. Connect the two devices to a PC via USB and
open a serial terminal on both with the same configuration as Table 6: "Serial port
configuration".

The application listens for keys typed in one device terminal and sends them to the remote
device when the return key is pressed; the remote device then outputs the received RF
messages to the serial port. Therefore, anything typed in one terminal becomes visible in
the other.

9.1 BLE chat master and slave roles

This section describes how two BLE chat master and slave devices interact with each other
in order to set up a point-to-point wireless chat.

The BLE stack must first be set up on both devices by sending a series of API commands
to the processor. The chat master and slave client and server roles are defined at runtime.

9.1.1 Initialization

The BLE stack must be correctly initialized before establishing a connection with another
BLE device. This is done with two commands:

aci_gatt_init();

aci_gap_init(GAP_CENTRAL_ROLE|GAP_PERIPHERAL_ROLE, TRUE,0x07, &service_handle,

&dev_name_char_handle, &appearance_char_handle);

BLE chat master and slave demo application UM2071

36/74 DocID029370 Rev 5

The BLE peripheral and central roles are specified in the aci_gap_init() command.

See the BLE API documentation for more information on these and following commands.

9.1.2 Add service and characteristics

Refer to Section 8.1.2: " Add service and characteristics ".

9.1.3 Start discovery procedure

To find another BLE chat master and slave device in discovery mode, a discovery
procedure must be started via:

aci_gap_start_general_discovery_proc(0x4000, 0x4000, 0x00, 0x00);

9.1.4 Enter connectable mode

The following GAP API command is used for entering general discoverable mode:

aci_gap_set_discoverable(ADV_IND, 0x90, 0x90, PUBLIC_ADDR, NO_WHITE_LIST_USE,

sizeof(local_name), local_name, 0, NULL, 0x6, 0x8);

9.1.5 Connection with chat master and slave client device

In the above mentioned discovery and mode assignment procedures, the two chat master
and slave applications assume respective client and server roles at runtime. During this
initial configuration phase, when a chat master and slave device is placed in discoverable
mode and it is found by the other chat master and slave device performing a discovery
procedure, a Bluetooth low energy connection is created and the device roles are defined.

The following GAP API command is used for connecting to the discovered device:

aci_gap_create_connection(0x4000, 0x4000,device_found_address_type,

device_found_address, PUBLIC_ADDR, 40, 40, 0, 60, 2000 , 2000);

Where device_found_address_type is the address type of the discovered chat master

and slave and device_found_address is the peer address of the discovered chat

master and slave device.

Once the two devices are connected, you can set up corresponding serial terminals and
type messages in either of them. The typed characters are stored in two respective buffers
and when the return key is pressed:

On the BLE chat master-and-slave server device, the typed characters are sent to the
master-and-slave client device by notifying the previously added TX characteristic (after
notifications have been enabled). This is done via:

aci_gatt_update_char_value(chatServHandle, TXCharHandle, 0, len, (uint8_t *)cmd+j);

On the master-and-slave client device, the typed characters are sent to the master-and-
slave server device, by writing the previously added RX characteristic. This is done via:

aci_gatt_write_without_resp (connection_handle, rx_handle +1, len, (uint8_t

*)cmd+j);

Where connection_handle is the handle returned upon connection as a parameter of

the connection complete event, rx_handle is the RX characteristic handle discovered by

the client device.

Once these API commands have been sent, the values of the TX and RX characteristics
are displayed on the serial terminals.

UM2071 BLE remote control demo application

 DocID029370 Rev 5 37/74

10 BLE remote control demo application

The BLE remote control application is supported on the BlueNRG-1, BlueNRG-2
development platforms (STEVAL-IDB007V1, STEVAL-IDB008V1). It demonstrates how to
control a remote device (like an actuator) using a BlueNRG-1, BlueNRG-2 device.

This application periodically broadcasts temperature values that can be read by any device.
The data is encapsulated in a manufacturer-specific AD type and the content (besides the
manufacturer ID, i.e., 0x0030 for STMicroelectronics) is as follows:

Table 7: BLE remote advertising data

Byte 0 Byte 1 Byte2

App ID (0x05) Temperature value (little-endian)

The temperature value is given in tenths of degrees Celsius.

The device is also connectable and exposes a characteristic used to control LEDs DL1,
DL2 and DL3 on the BLE kit platform. The value of this characteristic is a bitmap of 1 byte.
Each bit controls one of the LEDs:

 bit 0 is the status of LED DL1

 bit 1 is the status of LED DL2

 bit 2 is the status of LED DL3.

A remote device can therefore connect and write this byte to change or read the status of
these LEDs (1 for LED ON, 0 for LED OFF).

The peripheral disconnects after a timeout (DISCONNECT_TIMEOUT) to prevent a central

device remaining connected to the device indefinitely.

Security is not enabled by default, but this can be changed with ENABLE_SECURITY (refer

to file BLE_RC_main.h). When security is enabled, the central device must be
authenticated before reading or writing the device characteristic.

To interact with a device configured as a BLE remote control, another BLE device (a
BlueNRG-1, BlueNRG-2 or any Bluetooth® smart ready device) can be used to detect and
view broadcast data.

To control one of the LEDs, the device has to connect to a BlueNRG-1 BLE remote control
device and write in the exposed control point characteristic. The Service UUID is ed0ef62e-
9b0d-11e4-89d3-123b93f75cba. The control point characteristic UUID is ed0efb1a-9b0d-
11e4-89d3-123b93f75cba.

10.1 BLE remote control application setup

This section describes how to configure a BlueNRG-1 device to acting as a remote control
device.

10.1.1 Initialization

The BLE stack must be correctly initialized before establishing a connection with another
Bluetooth LE device. This is done with two commands:

aci_gatt_init();

aci_gap_init(GAP_PERIPHERAL_ROLE, 0, 0x07, &service_handle, &dev_name_char_handle,

&appearance_char_handle);

See BLE stack API documentation for more information on these and following commands.

BLE remote control demo application UM2071

38/74 DocID029370 Rev 5

10.1.2 Define advertising data

The BLE remote control application advertises certain manufacturing data as follows:

/* Set advertising device name as Node */

const uint8_t scan_resp_data[] = {0x05,AD_TYPE_COMPLETE_LOCAL_NAME,'N','o','d','e'}

/* Set scan response data */

hci_le_set_scan_response_data(sizeof(scan_resp_data),scan_resp_data);

/* Set Undirected Connectable Mode */

aci_gap_set_discoverable(ADV_IND, (ADV_INTERVAL_MIN_MS*1000)/625,

(ADV_INTERVAL_MAX_MS*1000)/625, PUBLIC_ADDR, NO_WHITE_LIST_USE, 0, NULL, 0, NULL, 0,

0);

/* Set advertising data */

hci_le_set_advertising_data(sizeof(adv_data),adv_data);

On the development platform, the temperature sensor value is set in the adv_data

variable.

10.1.3 Add service and characteristics

The BLE Remote Control service is added via:

aci_gatt_add_service(UUID_TYPE_128, &service_uuid, PRIMARY_SERVICE, 7,

&RCServHandle);

Where service_uuid is the private service 128-bit UUID allocated for the BLE remote

service (ed0ef62e-9b0d-11e4-89d3-123b93f75cba).

The command returns the service handle in RCServHandle.

The BLE remote control characteristic is added using the following command:

#if ENABLE_SECURITY

aci_gatt_add_char(RCServHandle, UUID_TYPE_128, &controlPointUuid, 1,

CHAR_PROP_READ|CHAR_PROP_WRITE|CHAR_PROP_WRITE_WITHOUT_RESP|CH AR_PROP_SIGNED_WRITE,

ATTR_PERMISSION_AUTHEN_READ|ATTR_PERMISSION_AUTHEN_WRITE,

GATT_NOTIFY_ATTRIBUTE_WRITE,16,1,&controlPointHandle);

#else

aci_gatt_add_char(RCServHandle, UUID_TYPE_128, &controlPointUuid, 1,

CHAR_PROP_READ|CHAR_PROP_WRITE|CHAR_PROP_WRITE_WITHOUT_RESP, ATTR_PERMISSION_NONE,

GATT_NOTIFY_ATTRIBUTE_WRITE, 16, 1,&controlPointHandle);

#endif

Where controlPointUuid is the private characteristic 128-bit UUID allocated for BLE

remote control characteristic (ed0efb1a-9b0d-11e4-89d3-123b93f75cba) and

controlPointHandle is the BLE remote control characteristic handle.

If security is enabled, the characteristic properties must be set accordingly to enable

authentication on controlPointUuid characteristic read and write.

10.1.4 Connection with a BLE Central device

When connected to a BLE central device (another BlueNRG-1, BlueNRG-2 device or any

Bluetooth® smart ready device), the controlPointUuid characteristic is used to control

the BLE remote control platform LED. Each time a write operation is performed on

controlPointUuid, the aci_gatt_attribute_modified_event() callback is

raised and the selected LEDs are turned on or off.

UM2071 BLE sensor profile demo

 DocID029370 Rev 5 39/74

11 BLE sensor profile demo

The BLE sensor profile demo is supported on the BlueNRG-1, BlueNRG-2 development
platforms (STEVAL-IDB007V1, STEVAL-IDB008V1). It implements a proprietary, Bluetooth
low energy (BLE) sensor profile.

This example is useful for building new profiles and applications that use the BlueNRG-1,
BlueNRG-2 SoC. The GATT profile is not compliant with any existing specifications as the
purpose of this project is to simply demonstrate how to implement a given profile.

This profile exposes the acceleration and environmental services.

Figure 23: "BLE sensor demo GATT database" shows the whole GATT database, including
the GATT (0x1801) and GAP (0x1800) services that are automatically added by the stack.

The acceleration service’s free fall characteristic cannot be read or written, but can be
signaled. The application sends notification of this characteristic (with a value of 0x01) if a
free fall condition is detected by the MEMS sensor (when the acceleration on the three
axes is near zero for a certain amount of time). Notifications can be enabled or disabled by
writing the associated client characteristic configuration descriptor.

The other characteristic exposed by the service gives the current value of the acceleration
measured by the accelerometer in six bytes. Each byte pair contains the acceleration on
one of the three axes. The values are given in mg. This characteristic is readable and can
be notified if notifications are enabled.

Another service is defined, which contains characteristics that expose data from some
environmental sensors: temperature and pressure. Each characteristic data type is
described in a format descriptor. All of the characteristics have read-only properties.

BLE sensor profile demo UM2071

40/74 DocID029370 Rev 5

Figure 23: BLE sensor demo GATT database

11.1 BlueNRG app for smartphones

An application is available for iOS™ and Android™ smartphones or tablets that also works
with the BLE sensor profile demo. This app enables notification of the acceleration
characteristic and displays the value on screen. Data from environmental sensors are also
periodically read and displayed.

UM2071 BLE sensor profile demo

 DocID029370 Rev 5 41/74

Figure 24: BlueNRG sensor app

11.2 BLE sensor profile demo: connection with a central device

This section describes how to interact with a central device, while the BLE stack is acting
as a peripheral. The central device may be another BlueNRG-1, BlueNRG-2 device acting
as a BLE master, or any other Bluetooth smart or Bluetooth smart ready device.

The BLE stack must first be set up by sending a series of BLE API commands to the
processor.

11.2.1 Initialization

The BLE stack must be correctly initialized before establishing a connection with another
Bluetooth LE device. This is done via:

aci_gatt_init();

aci_gap_init(GAP_PERIPHERAL_ROLE, 0, 0x07, &service_handle, &dev_name_char_handle,

&appearance_char_handle);

See BLE stack API documentation for more information on these and following commands.

11.2.2 Add service and characteristics

The BlueNRG-1 BLE stack has both server and client capabilities. A characteristic is an
element in the server database where data is exposed, while a service contains one or
more characteristics. The acceleration service is added with the following command:

aci_gatt_add_service(UUID_TYPE_128, &service_uuid, PRIMARY_SERVICE, 7,

&accServHandle);

The command returns the service handle on variable accServHandle. The free fall and

acceleration characteristics must now be added to this service thus:

aci_gatt_add_char(accServHandle, UUID_TYPE_128, &char_uuid, 1, CHAR_PROP_NOTIFY,

ATTR_PERMISSION_NONE, 16, 0, &freeFallCharHandle);

BLE sensor profile demo UM2071

42/74 DocID029370 Rev 5

aci_gatt_add_char(accServHandle, UUID_TYPE_128, &char_uuid, 6,

CHAR_PROP_NOTIFY|CHAR_PROP_READ, ATTR_PERMISSION_NONE,

GATT_NOTIFY_READ_REQ_AND_WAIT_FOR_APPL_RESP, 16, 0, &accCharHandle);

The free fall and acceleration characteristics handles are returned on

freeFallCharHandle and accCharHandle variables respectively.

Similar steps are followed for adding the environmental sensor and relative characteristics.

11.2.3 Enter connectable mode

Use GAP API command to enter one of the discoverable and connectable modes:

aci_gap_set_discoverable(ADV_IND, (ADV_INTERVAL_MIN_MS*1000)/625,

(ADV_INTERVAL_MAX_MS*1000)/625, STATIC_RANDOM_ADDR, NO_WHITE_LIST_USE

sizeof(local_name), local_name, 0, NULL, 0, 0);

Where

local_name[] = {AD_TYPE_COMPLETE_LOCAL_NAME,'B','l','u','e','N','R','G'};

The local_name parameter contains the name presented in advertising data, as per

Bluetooth core specification version, Vol. 3, Part C, Ch. 11.

11.2.4 Connection with central device

Once the BLE stack is placed in discoverable mode, it can be detected by a central device.
The smartphone app described in Section 11.1: "BlueNRG app for smartphones" is
designed for interact with the sensor profile demos (it also supports the BlueNRG-1
device).

Any Bluetooth smart or Bluetooth smart ready device like a smartphone can connect to the
BLE sensor profile demo.

For example, the LightBlue application in Apple Store® connects iPhone® versions 4S/5
and above can connect to the sensor profile device. When you use the LightBlue
application, detected devices appear on the screen with the BlueNRG name. By tapping on
the box to connect to the device, a list of all the available services is shown on the screen;
tapping a service shows the characteristics for that service.

The acceleration characteristic can be notified using the following command:

aci_gatt_update_char_value(accServHandle, accCharHandle, 0, 6, buff);

Where buff is a variable containing the three axes acceleration values.

Once this API command has been sent, the new value of the characteristic is displayed on
the phone.

UM2071 BlueNRG-1 sensor profile central demo

 DocID029370 Rev 5 43/74

12 BlueNRG-1 sensor profile central demo

The BLE sensor profile central demo is supported on the BlueNRG-1, BlueNRG-2
development platforms (STEVAL-IDB007V1, STEVAL-IDB008V1). It implements a basic
version of the BLE Sensor Profile Central role which emulates the Sensor Demo
applications available for smartphones (iOS and android).

This application configures a BlueNRG-1, BlueNRG-2 device as a Sensor device, Central
role which is able to find, connect and properly configure the free fall, acceleration and
environment sensors characteristics provided by a BLE development platform configured
as a BLE Sensor device, Peripheral role (refer to Section 11: "BLE sensor profile demo").

This application uses a new set of APIs allowing to perform the following operations on a
BlueNRG-1, BlueNRG-2 Master/Central device:

 Master Configuration Functions

 Master Device Discovery Functions

 Master Device Connection Functions

 Master Discovery Services, Characteristics Functions

 Master Data Exchange Functions

 Master Security Functions

 Master Common Services Functions

These APIs are provided through a binary library and they are fully documented on
available doxygen documentation within the DK SW package. The following master/central
binary libraries are provided on Bluetooth_LE\Profile_Framework_Central\library folder:

 libmaster_library_bluenrg1.a for IAR, Keil and Atollic toolchains on STSW-
BLUENRG1-DK SW package

 master_library_bluenrg1.lib for Keil toolchain on STSW-BNRG_V1-DK SW package

 libmaster_library_bluenrg1.a for IAR and Atollic toolchains on STSW-BNRG_V1-DK
SW package

BLE HID/HOGP demonstration application UM2071

44/74 DocID029370 Rev 5

13 BLE HID/HOGP demonstration application

The BLE HID/HOGP demonstration applications are supported by the BlueNRG-1,
BlueNRG-2 development platforms (STEVAL-IDB007V1, STEVAL-IDB008V1). It
demonstrates a BLE device using the standard HID/HOGP Bluetooth low energy
application profile. Keyboard and mouse demo examples are provided.

13.1 BLE HID/HOGP mouse demonstration application

The BLE HID mouse application implements a basic HID mouse with two buttons compliant
with the standard HID/HOGP BLE application profile.

The HID mouse device is named ‘STMouse’ in the central device list.

The mouse movements are provided by the 3D accelerometer and 3D gyroscope on the
BLE development platform.

 The left button is the ‘PUSH1’ button.

 The right button is the ‘PUSH2’ button

If the HID mouse is not used for two minutes, it closes the connection and enters deep
sleep mode. This idle connection timeout can be changed from the application. To exit
deep sleep mode, press the left ‘PUSH1 button or reset the platform.

13.2 BLE HID/HOGP Keyboard demonstration application

The BLE HID keyboard application implements a basic HID keyboard compliant with the
standard HID/HOGP BLE application profile.

The HID mouse device is named ‘STKeyboard’ in the central device list.

To successfully complete the bonding and pairing procedure, insert the PIN: 123456.

To use the HID keyboard:

 Connect the BLE development platform to a PC USB port

 Open a HyperTerminal window (115200, 8, N,1)

 Put the cursor focus on the HyperTerminal window

 The keys that are sent to the central device using the HID/HOGP BLE application
profile are also shown on the HyperTerminal window

If the HID keyboard is not used for two minutes, it closes the connection and enters deep
sleep mode. This idle connection timeout can be changed from the application. To exit
deep sleep mode, press the left ‘PUSH1 button or reset the platform.

UM2071 BLE throughput demonstration application

 DocID029370 Rev 5 45/74

14 BLE throughput demonstration application

The BLE throughput demonstration application provides some basic throughput
demonstration applications to provide some reference figures regarding the achievable
Bluetooth low energy data rate using the BlueNRG-1, BlueNRG-2 device.

The throughput application scenarios provided are:

1. Unidirectional scenario: the server device sends characteristic notifications to a client
device.

2. Bidirectional scenario: the server device sends characteristic notifications to a client
device and client device sends write without response characteristics to the server
device.

The throughput application exposes one service with two (20 byte max.) characteristic
values:

 The TX characteristic, with which the client can enable notifications; when the server
has data to be sent, it sends notifications with the value of the TX characteristic.

 The RX characteristic, is a writable characteristic; when the client has data to be sent
to the server, it writes a value in this characteristic.

The device roles which can be selected are:

1. Server, which exposes the service with the TX, RX characteristics (BLE peripheral
device)

2. Client, which uses the service TX, RX characteristics (BLE central device).

Each device role has two instances for each throughput scenario (unidirectional,
bidirectional).

The BLE throughput demonstration applications are supported by the BlueNRG-1,
BlueNRG-2 development platforms (STEVAL-IDB007V1, STEVAL-IDB008V1).

14.1 BLE unidirectional throughput scenario

The unidirectional throughput scenario lets you perform a unidirectional throughput test
where a server device sends notification to a client device.

To run this scenario:

 Program the client unidirectional application on one BLE platform and reset it. The
platform is seen on the PC as a virtual COM port.

 Open the port in a serial terminal emulator (the required serial port baudrate is
921600)

 Program the server unidirectional application on a second BLE platform and reset it.

 The two platforms try to establish a connection; if successful, the slave continuously
sends notifications of TX characteristic (20 bytes) to the client.

 After every 500 packets, the measured application unidirectional throughput is
displayed.

14.2 BLE bidirectional throughput scenario

The bidirectional throughput scenario lets you perform a bidirectional throughput test where
the server device sends notifications to a client device and client device sends write without
response characteristics to the server device.

To run this scenario:

BLE throughput demonstration application UM2071

46/74 DocID029370 Rev 5

 Program the client bidirectional application on one BLE platform and reset it. The
platform is seen on the PC as a virtual COM port.

 Open the related port in a serial terminal emulator (the required serial port baudrate is
921600)

 Program the server bidirectional application on a second BLE platform and reset it.

 Open the related port in a serial terminal emulator (the required serial port baudrate is
921600)

 The two platforms try to establish a connection; if successful, the slave device
continuously sends notifications of TX characteristic (20 bytes) to the client device and
the client device continuously sends write without responses of the RX characteristic
(20 bytes) to the server device.

 After every 500 packets, the measured application bidirectional throughput is
displayed.

UM2071 BLE notification consumer demonstration
application

 DocID029370 Rev 5 47/74

15 BLE notification consumer demonstration
application

The BLE ANCS demonstration application configures a BlueNRG-1, BlueNRG-2 device as
a BLE notification consumer, which facilitates Bluetooth accessory access to the many
notifications generated on a notification provider.

After reset, the demo places the BLE device in advertising with device name "ANCSdemo"
and sets the BlueNRG-1 authentication requirements to enable bonding.

When the device is connected and bonded with a notification provider, the demo configures
the BLE notification consumer device to discover the service and the characteristics of the
notification provider. When the setup phase is complete, the BLE device is configured as a
notification consumer able to receive the notifications sent from the notification provider.

The BLE notification consumer demonstration application is supported by the BlueNRG-1,
BlueNRG-2 development platforms (STEVAL-IDB007V1, STEVAL-IDB008V1).

BLE security demonstration applications UM2071

48/74 DocID029370 Rev 5

16 BLE security demonstration applications

The BLE Security demonstration applications are supported by the BlueNRG-1, BlueNRG-
2 development platforms (STEVAL-IDB007V1, STEVAL-IDB008V1). They provide some
basic examples about how to configure, respectively, two BLE devices as a Central and
Peripheral, and setup a secure connection by performing a BLE pairing procedure. Once
paired the two devices are also bonded.

The following pairing key generation methods are showed:

 PassKey entry with random pin

 PassKey entry with fixed pin

 Just works

 Numeric Comparison (new paring method supported only from BlueNRG-1, BlueNRG-
2 BLE stack v2.x)

For each pairing key generation method, a specific project security configuration is
provided for both Central & Peripheral device as shown in the following Table 8: "BLE
security demonstration applications security configurations combinations". Each Central
and Peripheral device must be loaded, respectively, with the application image targeting
the proper security configuration, in order to correctly demonstrate the associated BLE
security pairing functionality.

Table 8: BLE security demonstration applications security configurations combinations

Pairing key generation
method

Central device security
configuration

Peripheral device security
configuration

PassKey entry with random pin Master_PassKey_Random Slave_PassKey_Random

PassKey entry with fixed pin Master_PassKey_Fixed Slave_PassKey_Fixed

Just works Master_JustWorks Slave_JustWorks

Numeric Comparison Master_NumericComp Slave_NumericComp

16.1 Peripheral device

On reset, after initialization, Peripheral device sets security IO capability and authentication
requirements, in order to address the selected pairing key generation method, in
combinations with the related security settings of the Central device.

After initialization phase, Peripheral device also defines a custom service with 2 proprietary
characteristics (UUID 128 bits):

- TX characteristic: notification (CHAR_PROP_NOTIFY),

- RX characteristic with properties: read (CHAR_PROP_READ,

GATT_NOTIFY_READ_REQ_AND_WAIT_FOR_APPL_RES (application is notified when a

read request of any type is received for this attribute).

Based on the selected security configuration, the RX characteristic is defined with proper
security permission (link must be "encrypted to read" on JustWorks method, link must be
"encrypted to read and need authentication to read" on all other methods).

The Peripheral device enters in discovery mode with local name SlaveSec_Ax (x= 0,1,2,3

depending on the selected security configuration).

UM2071 BLE security demonstration applications

 DocID029370 Rev 5 49/74

Table 9: Peripheral device advertising local name parameter value

Peripheral device configuration Advertising local name Pairing method

Slave_JustWorks SlaveSec_A0 Just works

Slave_PassKey_Fixed SlaveSec_A1 PassKey entry with fixed pin

Slave_PassKey_Random SlaveSec_A2 PassKey entry with random pin

Slave_NumericComp SlaveSec_A3 Numeric Comparison

When a Central device starts the discovery procedure and detects the Peripheral device,
the two devices connects.

After connection, Peripheral device starts a slave security request to the Central device

aci_gap_slave_security_req() and , as consequence, Central devices starts pairing

procedure.

Based on the pairing key generation method, user could be asked to perform some actions
(i.e. confirm the numeric value if the numeric comparison configuration is selected, add the
key, displayed on Peripheral device, on Central hyper terminal, if the passkey entry with
random pin configuration is selected).

After devices pairs and get bonded, Peripheral device displays the list of its bonded
devices and configures its white list in order to add the bonded Central device to its white

list aci_gap_configure_whitelist() API.

Central devices starts the service discovery procedure to identify the Peripheral service
and characteristics and, then, enabling the TX characteristic notification.

Peripheral device starts TX characteristic notification to the Central device at periodic
interval, and it provides the RX characteristic value to the Central device each time it reads
it.

When connected, if user presses the BLE platform button PUSH1, Peripheral device
disconnects and enters undirected connectable mode mode with advertising filter enabled

(WHITE_LIST_FOR_ALL: Process scan and connection requests only from devices in the

white list). This implies that Peripheral device accepts connection requests only from
devices on its white list: Central device is still be able to connect to the Peripheral device;
any other device connection requests are not accepted from the Peripheral device.

TX and RX characteristics length is 20 bytes and related values are defined as follow: - TX
characteristic value:
{'S','L','A','V','E','_','S','E','C','U','R','I','T','Y','_','T','X

',' ',x1,x2}; where x1, x2 are counter values - RX characteristic value:
{'S','L','A','V','E','_','S','E','C','U','R','I','T','Y','_','R','X

',' ',x1,x2}; where x1, x2 are counter values

16.2 Central device

On reset, after initialization, Central device uses the Master_SecuritySet() API for

setting the security IO capability and authentication requirements in order to address the
specific selected paring method, in combinations with the related security settings of the
Central device. Central device application is using the Central/Master library APIs and
callbacks for performing the Central device BLE operations (device discovery, connection,
…).

BLE security demonstration applications UM2071

50/74 DocID029370 Rev 5

Central device starts a device discovery procedure (Master_DeviceDiscovery() API,

looking for the associated Peripheral device SlaveSec_Ax (x= 0,1,2,3 : refer to Table 8:

"BLE security demonstration applications security configurations combinations").

When found, Central connects to the Peripheral device. In order to start the pairing, Central
device is expecting the Peripheral device to send a slave security request. Once the
security request is received, Central device starts the pairing procedure. Based on the
pairing key generation method, user could be asked to perform some actions (i.e. confirm
the numeric value if the numeric comparison configuration is selected, add the key,
displayed on Peripheral device, on Central hyper terminal, if the passkey entry with random
pin configuration is selected). Once the pairing and bonding procedure has been
completed, the Central device starts the service discovery procedure in order to find the
Peripheral TX & RX characteristics.

After Service Discovery, Central enables the TX characteristic notification. Then the Central
device receives periodically the TX characteristic notification value from Peripheral device
and read the related RX characteristic value from Peripheral device.

When connected, if user presses the BLE platform PUSH1 button, the Central device
disconnects and reconnect to the Peripheral device which enters in undirected connectable
mode with advertising filter enabled. Once connected to the Peripheral device, it enters
again on the TX characteristic notification/RX characteristic read cycle.

UM2071 BLE power consumption demo application

 DocID029370 Rev 5 51/74

17 BLE power consumption demo application

The BLE power consumption demo application allows to put the selected BLE device in
discovery mode: user can select from a test menu which advertising interval to use (100 ms
or 1000 ms). To take the BlueNRG-1,2 current consumption is necessary to connect a DC
power analyzer to the JP4 connector of the STEVAL-IDB007V1, STEVAL-IDB008V1 kit
platforms. Further, user can setup a connection with another device configured as a master
and take the related power consumption measurements.

The master role can be covered from another BlueNRG-1, BlueNRG-2 kit platform
configured with the DTM FW application (DTM_UART_16MHz.hex,
DTM_UART_32MHz.hex respectively), and running a specific script through BlueNRG GUI
or Script launcher PC applications.

On BLE_Power_Consumption demo application project folder, two scripts are provided for
configuring the master device and create a connection with the BlueNRG-1,2 kit platform
under test.

The two scripts allow to establish a connection with, respectively, 100 ms and 1000 ms as
connection interval.

The power consumption demo supports some test commands:

- f: Device in Discoverable mode with fast interval 100 ms.

- s: Device in discoverable mode with slow interval 1000 ms.

- r: Reset the BlueNRG-1.

- ?: Display this help menu.

This demo application is available only on BlueNRG-1_2 DK SW package (STSW-
BLUENRG1-DK) supporting BLE stack v2.x family.

BlueNRG-1, BlueNRG-2 peripheral driver
examples

UM2071

52/74 DocID029370 Rev 5

18 BlueNRG-1, BlueNRG-2 peripheral driver examples

The BlueNRG-1, BlueNRG-2 peripheral driver examples applications are supported
respectively by the BlueNRG-1, BlueNRG-2 development platforms (STEVAL-IDB007V1,
STEVAL-IDB008V1). The kit contains a set of examples demonstrating how to use the
BlueNRG-1, BlueNRG-2 device peripheral drivers ADC, GPIOs, I²C, RTC, SPI, Timers,
UART and WDG.

On all following sub-sections, any reference to the BlueNRG-1 device and related
kit platform STEVAL-IDB007V1 is also valid for the BlueNRG-2 device and related
kit platform STEVAL-IDB008V1.

18.1 ADC examples

ADC polling: conversion is managed through the polling of the status register. The systick
timer is used to have a delay of 100 ms between two samples. Each sample from ADC is
printed through UART (USB-to-SERIAL must be connected to the PC). The default input is
the differential ADC1-ADC2.

ADC DMA: conversion is managed through the ADC DMA channel. The systick timer is
used to have a delay of 100 ms between two samples. Each sample from ADC is printed
through UART (USB-to-SERIAL must be connected to the PC).

ADC PDM: this example shows a PDM stream processor from a MEMS microphone
(MP34DT01-M i.e.) to UART. The application also supports the MEMS microphone
MP34DT01-M available on X-NUCLEO-CCA02MM1 board (refer to related BlueNRG-1 DK
SW package ADC PDM doxygen documentation for HW connections setup).

User is requested to connect the BlueNRG-1 STEVAL-IDB007V1 to a PC USB port and
open PuTTY serial terminal [512000, 8-N-1-N]. PuTTY serial terminal has to be configured
for storing the captured data on a log file. After the data have been captured, the PC
Audacity tool can been opened for importing the streamed data, following these steps:

 File/Import/Raw Data.

 Open the log data.

 Configure as follows:

 Encoding: Signed 16-bit PCM.

 Byte order: Little-endian.

 Channels: 1 Channel (Mono).

 Sample rate: 8000 (default, 16 kbps is supported by changing the firmware
symbol FS in ADC_PDM_main.c)

 Press the button Import.

 Play the audio.

Due to the fact that the output data format is 2-bytes (B1B2), it is possible that the
serial terminal gets as first byte, half data (B2). This first byte must be removed
from the log file.

18.2 Flash example

Data storage: demonstrates basic flash operations as erase, write and verification.

UM2071 BlueNRG-1, BlueNRG-2 peripheral driver
examples

 DocID029370 Rev 5 53/74

18.3 GPIO examples

Input interrupt: demonstrates the use of GPIO input interrupts.

 The PUSH1 button (IO13) is configured to generate the interrupt event on both edges
of the input signal. LED DL1 is toggled ON if the level is high and OFF if low.

 The PUSH2 button (IO5) is configured to generate the interrupt event on the rising
edge of the input signal. LED DL2 is toggled ON/OFF at each rising edge event.

IO toggle: demonstrates GPIO state changes by toggling LEDs DL1 and DL2 every 500
ms.

IO wakeup: demonstrates device wakeup from standby mode using the GPIO interrupt.

 The PUSH1 button (IO13) is configured to generate the interrupt event on both edges
of the input signal. LED DL2 is toggled, the system becomes active and LED DL1 is
toggled by the systick interrupt service routine every 500 ms.

Once the device is in standby, there is no way to open a connection with the debug tool or
download new code as the clocks are down and the system voltages are at their minimum
values. It is necessary to wake-up the system first, which is why the IO9 (SDW clock
signal) is wake-up event. In this case, any connection attempt from the debugger wakes up
the system.

18.4 I²C examples

In all of the following examples, I²C is configured in master mode and its clock frequency is
set to 10 kHz.

Master polling: I²C communication is controlled by polling the I²C status register content.
This example involves a master board with Master_Polling firmware code and a slave
board with Slave_Polling firmware.

The Master board has a small command line interface through UART (USB-to-SERIAL
must be connected to the PC), which you can use to read and change the LED status of
the slave board. I²C is used to transfer the information and change the status of the LEDs
on the slave board.

Slave polling: I²C communication is controlled by polling the I²C status register content.
This also involves a master and a slave board with respective Master_Polling and
Slave_Polling firmware. The slave board receives read and change requests for the LEDs
via I²C.

Master sensor: I²C communication is controlled by polling of I²C status register content,
interrupts or DMA (three different configurations). In this example, the environmental
sensor LPS25HB is configured to provide output data at 1 Hz. The BlueNRG-1 polls the
status register of the sensor and prints available pressure and temperature data via UART
(USB-to-SERIAL must be connected to the PC).

18.5 Micro examples

Hello world: example for the basic ‘BlueNRG-1 Hello World’ application. Connect the
BlueNRG-1 platform to a PC USB port and open a specific PC tool/program (like Tera
Term): the "Hello World: BlueNRG-1 is here!" message is displayed.

Sleep test: this test provides an example for the following BlueNRG-1 sleep modes:

 SLEEPMODE_WAKETIMER places the BlueNRG-1 in deep sleep with the timer clock
sources running. The wakeup sources are typing any character on the keyboard, the
PUSH1 button or the sleep timer configured with a timeout of 5 s.

BlueNRG-1, BlueNRG-2 peripheral driver
examples

UM2071

54/74 DocID029370 Rev 5

 The SLEEPMODE_NOTIMER places the BlurNRG-1 in deep sleep with the sleep
timer clock sources turned off. The only wakeup sources are typing any character on
the keyboard and the PUSH1 button.

The demo supports some user commands:

 s: SLEEPMODE_NOTIMER - wake on UART/PUSH1

 t: SLEEPMODE_WAKETIMER - wake on UART/timeout 5 s/PUSH1

 l: Toggle led DL1

 p: Print the ‘Hello World’ message

 r: Reset the BlueNRG-1 device

 ?: Display this help menu

 PUSH1: toggle LED DL1

18.6 Public Key Accelerator (PKA) demonstration application

The BlueNRG-1 PKA demonstration application is supported by the BlueNRG-1, BlueNRG-
2 development platforms (STEVAL-IDB007V1,STEVAL-IDB008V1). It provides a basic
examples about how to use the available PKA driver APIs in order to perform a basic PKA
processing and check the results.

The Public Key Accelerator (PKA) is a dedicated HW block used for computation of
cryptographic public key primitives related to ECC (Elliptic curve Cryptography).

Please notice that this peripheral is used by the BlueNRG-1, BlueNRG-2 Bluetooth Low
Energy stack during the security pairing procedures, so user application must not use it
during such procedures.

The PKA demonstration applications performs the following steps:

Starting from the PKA known point on the ellipse PKS_SetData() with PKA_DATA_PCX,

PKA_DATA_PCYand from a random generated keyA, it performs a PKA process which

generates a new point A on the ellipse.

The same process is repeated from a new generated random keyB, leading to a new point
B on the ellipse.

At this stage, a new PKA process is started using the keyA with the point B coordinates.
This generates a new point C which is still on the same ellipse.

18.7 RNG examples

Terminal: shows how to use the RNG. It gets the RNG values and print them on the
terminal.

18.8 RTC examples

Clock watch: implements both RTC timer and RTC clockwatch.

The RTC timer generates the 500 ms interrupt interval. The LED DL1 state is toggled in the
RTC interrupt handler to signal proper RTC timer operation.

The RTC clockwatch is also enabled with the system time and date set to December 1st
2014, 23 h 59 m 31 s. The RTC clockwatch match registers are then set to December 2nd
2014, 0 h 0 m 1 s. As soon as the RTC clockwatch data register and match registers
coincide (30 s after device power up), the RTC clockwatch match interrupt is generated
and LED DL2 is toggled to signal the event.

UM2071 BlueNRG-1, BlueNRG-2 peripheral driver
examples

 DocID029370 Rev 5 55/74

Time base: the RTC is configured in the periodic timer mode, the load register
(RTC_TLR1) value is set and the RTC is enabled. Whenever the RTC timer reaches the
value 0x00 it generates an interrupt event and the timer value is automatically re-loaded
from the RTC_TLR1 register, which is set to generate the interrupt every 1 s. The LED DL1
is toggled at each interrupt event.

Time base pattern: periodic mode is used with a pattern configuration. The RTC is
configured in the periodic timer mode and register RTC_TLR1 is set to generate a 1 s
interval, while RTC_TLR2 is set to generate a 100 ms interval.

The RTC is then enabled and whenever the RTC timer reaches the value 0x00 it generates
an interrupt and the timer value is automatically re-loaded from register RTC_TLR1 or
RTC_TLR2 register depending on the pattern register setting.

The pattern size is set to 8 bits and the pattern is set to 0b11110010, so the RTC
generates four intervals with the RTC_TLR1 value followed by two RTC_TLR2 value
intervals. The pattern repeats itself and the RTC interrupt routine toggles LED DL1 (IO6).

18.9 SPI examples

The following SPI application examples are available:

Master polling: involves a master board with the Master_Polling firmware code and a
slave board with the Slave_Polling firmware. The Master board has a small command line
interface through UART (USB-to-SERIAL must be connected to the PC), which you can
use to read and change the LED status of the slave board via SPI.

The SPI is configured in master mode and the SPI clock set to 100 kHz. The data is
transferred in the Motorola format with an 8-bit data frame, with clock low when inactive
(CPOL=0) and data valid on clock trailing edge (CPHA = 1).

Slave polling: SPI communication is controlled by polling the SPI status register content.
This also involves a master and a slave board with respective Master_Polling and
Slave_Polling firmware. The slave board receives read and change requests for the LEDs
via SPI.

The SPI is configured in slave mode and the SPI clock set to 100 kHz. The data is
transferred in the Motorola format with an 8-bit data frame, with clock low when inactive
(CPOL=0) and data valid on clock trailing edge (CPHA = 1).

Master sensor: SPI communication is controlled by polling of the SPI status register
content, interrupts or DMA (3 different configurations). SPI is used to communicate with the
LSM6DS3 inertial sensor SPI interface. Whenever the sensor generates an IRQ, the
accelerometer and gyroscope output data are read and printed through UART (USB-to-
SERIAL must be connected to the PC).

The SPI is configured in master mode and the SPI clock set to 100 kHz. The data is
transferred in the Motorola format with an 8-bit data frame, with clock low when inactive
(CPOL=0) and data valid on clock trailing edge (CPHA = 1).

Master DMA: SPI communication is controlled by DMA of the SPI status register content. It
involves a master board with the Master_Dma firmware code and a slave board with the
Slave_Dma firmware. The Master board has a small command line interface through UART
(USB-to-SERIAL must be connected to the PC), which you can use to read and change the
LED status of the slave board via SPI.

The SPI is configured in master mode and the SPI clock set to 100 kHz. The data is
transferred in the Motorola format with an 8-bit data frame, with clock low when inactive
(CPOL=0) and data valid on clock trailing edge (CPHA = 1).

BlueNRG-1, BlueNRG-2 peripheral driver
examples

UM2071

56/74 DocID029370 Rev 5

Slave DMA: SPI communication is controlled by DMA of the SPI status register content. It
involves a master board with the Master_Dma firmware code and a slave board with the
Slave_Dma firmware. The slave board receives read and change requests for the LEDs via
SPI.

The SPI is configured in slave mode and the SPI clock set to 100 kHz. The data is
transferred in the Motorola format with an 8-bit data frame, with clock low when inactive
(CPOL=0) and data valid on clock trailing edge (CPHA = 1).

SPI 3 wires: demonstrates the SPI 3 wires communication for reading humidity and
temperature data from the humidity sensor HTS221. In this example, the evaluation board
for HTS221, STEVAL-MKI141V2 is used. The SPI clock frequency is set to 100 kHz. The
data is transferred in the Microwire format and the data frame size is 8 bits.

18.10 SysTick examples

Time base: The interrupt service routine toggles the user LEDs at approximately 0.5 s
intervals.

18.11 Timers examples

Mode 1: Timer/Counter 1 (TnCNT1) functions as the time base for the PWM timer and
counts down at the clock rate selected by the Timer/Counter 1 clock selector. When an
underflow occurs, the timer register is reloaded alternately from the TnCRA (first reload)
and TnCRB registers and count down begins from the loaded value.

Timer/Counter 2 can be used as a simple system timer, an external-event counter, or a
pulse-accumulate counter. Counter TnCNT2 counts down with the clock selected by the
Timer/Counter 2 clock selector, and can be configured to generate an interrupt upon
underflow.

MFTX1 and MFTX2 use prescaled clock as Timer/Counter 1. The IO2 pin is configured as
output, generating a signal with 250 ms positive level and 500 ms negative level via
MFTX1. The IO3 pin is configured as output, generating a signal with 50 ms positive level
and 100 ms negative level via MFTX2.

Timer/Counter 1 interrupts upon reload are enabled for MFTX1 and MFTX2; interrupt
routines toggle LED DL1 for MFTX1 and LED DL2 for MFTX2.

Mode 1a (pulse-train mode): the Timer/Counter 1 functions as PWM timer and
Timer/Counter 2 is used as a pulse counter that defines the number of pulses to be
generated.

In this example, MFTX2 is configured to generate 30 pulses with positive level of 500 ms
and negative level of 250 ms. MFTX2 uses prescaled clock as Timer/Counter 1. The IO3
pin is configured as output generating the number of pulses configured.

Interrupts TnA and TnB are enabled and toggle GPIO 8 and 10, while Interrupt TnD is
enabled and sets GPIO 7.

A software start trigger or external rising or falling edge start trigger can be selected. This
example uses a software trigger which is generated after system configuration.

Timer/Counter 1 interrupts on reload are enabled for MFTX1. Interrupt routines toggle LED
DL1 for MFTX2.

Mode 2 (dual-input capture mode): Timer/Counter 1 counts down with the selected clock
and TnA and TnB pins function as capture inputs. Transitions received on the TnA and TnB
pins trigger a transfer of timer content to the TnCRA and TnCRB registers, respectively.

UM2071 BlueNRG-1, BlueNRG-2 peripheral driver
examples

 DocID029370 Rev 5 57/74

Timer/Counter 2 counts down with selected clock and can generate an interrupt on
underflow.

In this example, MFTX1 is used. The CPU clock is selected as the clock signal for
Timer/Counter 1 and a Prescaled clock is used as the clock source for Timer/Counter 2.

Sensitivity to falling edge is selected for TnA and TnB inputs; counter preset to 0xFFFF is
disabled for both inputs.

The IO2 pin is internally connected to TnA input (MFTX1) and the IO3 pin is internally
connected to TnB input (MFTX1).

Interrupts TnA and TnB are enabled and triggered by transitions on pins TnA and TnB,
respectively. The interrupt routine records the value of TnCRA or TnCRB and calculates
the period of the input signal every second interrupt.

Interrupt TnC is enabled and is triggered on each underflow of Timer/Counter1; it
increments the underflow counter variables used to calculate the input signal period.

LED DL1 is toggled ON if a frequency of about 1 kHz is detected on IO2, and LED DL2 is
toggled ON if a frequency of about 10 kHz is detected on IO3.

Mode 3 (dual independent timer/counter): the timer/counter is configured to operate as a
dual independent system timer or dual external-event counter. Timer/Counter 1 can also
generate a 50% duty cycle PWM signal on the TnA pin, while the TnB pin can be used as
an external-event input or pulse-accumulate input, and serve as the clock source to either
Timer/Counter 1 or Timer/Counter 2. Both counters can also be operated from the
prescaled system clock.

In this example MFTX1 is used. The CPU clock is selected as the clock signal for
Timer/Counter 1, while Timer/Counter 2 uses an external clock on TnB pin. Sensitivity to
rising edge is selected for TnB input. Timer/Counter 1 is preset and reloaded to 5000, so
the frequency of the output signal is 1 kHz. Timer/Counter 2 is preset and reloaded to 5.

The IO3 pin is internally connected to TnA input (MFTX1), while the IO2 pin is configured
as output and configured as the PWM output from Timer/Counter 1.

The LED DL1 is toggled in the main program according to a variable which is changed in
TnD interrupt routine. Interrupt TnA and TnD are enabled and are triggered on the
underflow of Timer/Counter1 and Timer/Counter2 respectively.

Mode 4 (input-capture plus timer): is a combination of mode 3 and mode 2, and makes it
possible to operate Timer/Counter 2 as a single input-capture timer, while Timer/Counter 1
can be used as a system timer as described above.

In this example, MFTX1 is used. The CPU clock is selected as the input clock for
Timer/Counter 1 and Timer/Counter 2. Automatic preset is enabled for Timer/Counter 2.

The IO2 pin is internally connected to the TnB input (MFTX1), while the IO3 pin is
configured as the output and configured as the PWM output from Timer/Counter 1.

Interrupt TnA is enabled and triggered on the underflow of Timer/Counter1; it sets a new
value in the TnCRA register. Interrupt TnB in enabled and triggered when a transition on
TnB input (input capture) is detected; it saves the TnCRB value. Interrupt TnD in enabled
and it triggered on the underflow of Timer/Counter2.

MFT timers: this example shows how configure peripherals MFT1, MFT2 and SysTick to
generate three timer interrupts at different rate: MFT1 at 500 ms, MFT2 at 250 ms and
SysTick at 1 second.

BlueNRG-1, BlueNRG-2 peripheral driver
examples

UM2071

58/74 DocID029370 Rev 5

18.12 UART examples

DMA: IO8 and IO11 are configured as UART pins and DMA receive and transmit requests
are enabled. Each byte received from UART is sent back through UART in an echo
application (USB-to-SERIAL must be connected to the PC).

Interrupt: IO8 and IO11 are configured as UART pins and receive and transmit interrupts
are enabled. Each byte received from UART is sent back through UART in an echo
application (USB-to-SERIAL must be connected to the PC).

Polling: IO8 and IO11 are configured as UART pins. Each byte received from UART is
sent back through UART in an echo application (USB-to-SERIAL must be connected to the
PC).

18.13 WDG examples

Reset: demonstrates the watchdog functionality and using it to reboot the system when the
watchdog interrupt is not serviced during the watchdog period (interrupt status flag is not
cleared).

The watchdog is configured to generate the interrupt with a 15 s interval, then it is enabled
and monitors the state of the PUSH1 button (IO13 pin). Any change on this pin triggers the
watchdog counter to reload and restart the 15 s interval measurement.

If the IO13 pin state does not change during this interval, the watchdog generates an
interrupt that is intentionally not cleared and therefore remains pending; the watchdog
interrupt service routine is therefore called continuously and the system is stuck in the
watchdog interrupt handler.

The chip is reset as it can no longer execute user code. The second watchdog timeout
triggers system reboot as a new watchdog interrupt is generated while the previous
interrupt is still pending. The application then starts measuring the 15 s interval again.

The three user LEDs are toggled at increasing frequencies until the board is reset or
PUSH1 button is pressed, which restores the LEDs toggling frequency with the 15 s
watchdog timer.

Wakeup: The watchdog timer is a 32-bit down counter that divides the clock input (32.768
kHz) and produces an interrupt whenever the counter reaches zero. The counter is then
reloaded with the content of the WDT_LR register. If the interrupt status flag is not cleared
and a new interrupt is generated, then the watchdog may generate a system reset.

This example demonstrates the use of the watchdog to periodically wake the system from
standby mode using the watchdog interrupt. The watchdog is configured to generate the
interrupt at 1 s intervals. The watchdog is then enabled and the system is switched to the
standby mode. As soon as the watchdog interrupt is generated, the system wakes up,
LED1 (IO6 pin) is toggled and the device returns to standby mode. The IO6 pin is therefore
toggled every 1 s.

UM2071 Schematic diagrams

 DocID029370 Rev 5 59/74

19 Schematic diagrams
Figure 25: STEVAL-IDB007V1 arduino connectors

Figure 26: STEVAL-IDB007V1 JTAG

ARDUINO

CONNECTORS

DIO0

DIO12

DIO1

DIO7

DIO5

DIO0

RESETN

DIO2

DIO3

DIO8

DIO4

RESETN

DIO6

DIO3

DIO2

DIO11

DIO8

DIO11
ADC1

ADC2

DIO13

DIO14

TEST1

VBLUE

VBLUE

R25 0_0402

R1 0_0402

R20_0402

CN1

NC

1

2

3

4

5

6

7

8

9

10

R60_0402

R8 0_0402

R7 0_0402

R22 0_0402

R18 0_0402

R11 0_0402

R9 0_0402

R24 0_0402

R4 0_0402

R20 0_0402

R3 0_0402

R13 0_0402

R12 0_0402

CN4

NC

1

2

3

4

5

6

R14 0_0402

R150_0402

R190_0402 R17 0_0402

CN3

NC

1

2

3

4

5

6

7

8

R10 0_0402

CN2

NC

1

2

3

4

5

6

7

8

R160_0402

R5

0_0402

R21 0_0402
R230_0402

GSPG1105161500SG

ST Link: 3.0-3.6V, 5V tolerant
IAR J-Link: 1.2-3.6V, 5V tolerant

Male Connector
2x10 HDR straight

RS 473-8282

JTAG

JTMS-SWTDIO
JTCK-SWTCK

DIO0

DIO1
RESETN

GND

VBLUE

CN7

SWD

1 2
3 4
5 6
7 8
9 10

11 12
13 14
15 16
17 18
19 20

GSPG1105161505SG

Schematic diagrams UM2071

60/74 DocID029370 Rev 5

Figure 27: STEVAL-IDB007V1 BlueNRG-1

UM2071 Schematic diagrams

 DocID029370 Rev 5 61/74

Figure 28: STEVAL-IDB007V1 power management, sensors

GREEN

POWER MANAGEMENT

SENSORs

USB_5V

S
P

I_
O

U
T

SPI_IN

S
P

I_
C

S

S
P

I_
C

L
K

DIO12

I2C2_DAT

I2C2_CLK

VDD
VBLUE

VBLUE

VBLUE

VBLUE

VBLUE

VBLUE

VBLUE

VBLUE

C23

33n_0402

JP1

Jumper 3

1

2

3

R34

10K_0402

R37

0_0402

C22

1u_0402

R42

0_0402

R35 0_0402

R31 0_0402

U7
LSM6DS3

SDO/SA0
1

SDx
2

SCx
3

INT1
4

V
D

D
IO

5

G
N

D
6

G
N

D
7

S
D

A
1

4

S
C

L
1

3

C
S

1
2

NC
11

OCS
10

INT2
9

VDD
8

R28
470_0402

C32
100 n_0402

JP2

Jumper 3

1

2

3

U3

LDS3985PU33R

Vin
1

N.C.
2

Vout
3

Vinh
6

Gnd
5

Bypass
4

G
n

d
7

C27

4.7u_0603

C30

100 n_0402

DL4

R38

0_0402R36

10K_0402

C28

100 n_0402

R41 0_0402

BATT

Battery holder

C29

100 n_0402

R39

0_0402

C31

100 n_0402

U6

LPS25HB

VDDIO
1

SCL
2

R
E

S
3

S
D

A
4

S
A

0
5

CS
6INT_DRDY
7G

N
D

8
G

N
D

9
V

D
D

1
0

C24

2.2u_0402

GSPG1105161525SG

Schematic diagrams UM2071

62/74 DocID029370 Rev 5

Figure 29: STEVAL-IDB007V1 buttons and LEDs

UM2071 Schematic diagrams

 DocID029370 Rev 5 63/74

Figure 30: STEVAL-IDB007V1 micro

MICRO

VLCD

OSC_IN

OSC_OUT

NRST

VDDA

USBDM

USBDP

V
D

D
3

V
D

D
1

VDD2

VLCD VDD1 VDD2
VDDA

NRST

VDD3

JTMS

J
T

C
K

J
T

D
I

J
T

D
O

TXD1
R

X
D

OE

USART1_RX

USART1_TX

USART1_TX

USART1_RX

OSC_IN

OSC_OUT

P
B

2

S
P

I_
C

S
1

S
P

I_
C

L
K

1

S
P

I_
O

U
T

1

S
P

I_
IN

1

1-2SEL

3-4SEL

DIO7

R
E

S
E

T
N

VDD VDD VDD
VDD

VDD

VDD

C40

100 n_0402

C37

100 n_0402

C39

1u_0402

C38

100 n_0402

JP3

USART

1

2

3

C42 20p_0402

U8

STM32L151CBU6

VLCD
1

PC13 RTC_AF1- W KUP2
2

PC14-OSC32_IN
3

PC15-OSC32_OUT
4

PH0-OSC_IN
5

PH1-OSC_OUT
6

NRST
7

VSSA
8

VDDA
9

PA0- WKUP1
10

PA1
11

PA2
12

P
A

3
1

3

P
A

4
1

4

P
A

5
1

5

P
A

6
1

6

P
A

7
1

7

P
B

0
1

8

P
B

1
1

9

P
B

2
2

0

P
B

1
0

2
1

P
B

1
1

2
2

V
S

S
_

1
2

3

V
D

D
_

1
2

4

V
D

D
_

3
4

8

V
S

S
_

3
4

7

P
B

9
4

6

P
B

8
4

5

B
O

O
T

0
4

4

P
B

7
4

3

P
B

6
4

2

P
B

5
4

1

P
B

4
4

0

P
B

3
3

9

P
A

1
5

3
8

P
A

1
4

3
7

VDD_2
36

VSS_2
35

PA13
34

PA12
33

PA11
32

PA10
31

PA9
30

PA8
29

PB15
28

PB14
27

PB13
26

PB12
25

G
N

D
4

9

C35

100 n_0402

C41

1u_0402

R47

10K_0402

C43 20p_0402

X1
8MHz

C36

100 n_0402

R51

1M_0402

GSPG1105161540SG

Schematic diagrams UM2071

64/74 DocID029370 Rev 5

Figure 31: STEVAL-IDB007V1 USB, level translator, JTAG for micro

USB

JTAG FOR MICRO

JTMS
JTCK
JTDO
JTDI

DM
DP

USBDP

USBDM

DP

DM

USB_5V

VDD

VDD

R44

0_0402

CN5

USB micro B

Vcc
1

D-
2

D+
3

ID
4

GND
5

GND
6

GND
7

GND
8

GND
11

GND
10

GND
9

C33

100n_0402

U9

USBLC6-2SC6

I/O11
1

GND
2

I/O21
3

I/O22
4

VBUS
5

I/O12
6

CN6

CONN

12
34
56
78
910

R45

0_0402

R43

NC

LEVEL TRANSLATOR

OE

RXD

TXD1

PB2

TXD

SPI_CS1/RXD

DIO7

VDDVBLUE
U10

ST2378E

Vl
1

I/OVl1
2

I/OVcc2
3

I/OVl3
4

I/OVcc4
5

I/OVl5
6

I/OVcc6
7

I/OVl7
8

I/OVcc8
9

Gnd
10

Vcc
20

I/OVcc1
19

I/OVl2
18

I/OVcc3
17

I/OVl4
16

I/OVcc5
15

I/OVl6
14

I/OVcc7
13

I/OVl8
12

OE
11

R49 0_0402

R52

0_0402

R50

10k_0402

R48

0_0402

GSPG1105161600SG

UM2071 Schematic diagrams

 DocID029370 Rev 5 65/74

Figure 32: STEVAL-IDB007V1 switch

Figure 33: STEVAL-IDB008V1 circuit schematic JTAG

1-2SEL

SPI_CS1

SPI_CLK1
SPI_OUT1

SPI_IN1

3-4SEL

SPI_IN

SPI_OUT

SPI_CLK

SPI_CS1/RXD

VDD

TP2

GND

R61

0_0402

TP3

GND

R58 10K_0402

R62

0_0402

R64 10K_0402 R63

10K_0402

U11

STG3692

1S2
1

Vcc
2

1-2SEL
3

2S1
4

D
2

5

2
S

2
6

3
S

1
7

D
3

8

D
1

1
6

1
S

1
1

5

4
S

2
1

4

D
4

1
3

4S1
12

GND
11

3-4SEL
10

3S2
9

R59 0_0402

C45

100n_0402

R56 10K_0402

TP1

GND

R60 0_0402

R46 10K_0402

R57

10K_0402

GSPG1105161605SG

1-2SEL=3-4SEL=H => SPI CONNECTED
TO THE BLUENRG-1
1-2SEL=3-4SEL=L => SPI NOT
CONNECTED TO THE BLUENRG-1

ST Link: 3.0-3.6V, 5V tolerant
IAR J-Link: 1.2-3.6V, 5V tolerant

Male Connector
2x10 HDR straight

RS 473-8282

JTAG

JTMS-SWTDIO
JTCK-SWTCK

DIO0

DIO1
RESETN

GND

VBLUE

CN7

SWD

1 2
3 4
5 6
7 8
9 10

11 12
13 14
15 16
17 18
19 20

Schematic diagrams UM2071

66/74 DocID029370 Rev 5

Figure 34: STEVAL-IDB008V1 circuit schematic arduino connectors

ARDUINO
CONNECTORS

DIO0

DIO12

DIO1
DIO7

DIO5

DIO0

RESETN

DIO2
DIO3

DIO8

DIO4

RESETN
DIO6

DIO3
DIO2

DIO11
DIO8
DIO11ADC1

ADC2

DIO13
DIO14

TEST1

VBLUE

VBLUE

R24 0_0402

R22 0_0402

R160_0402

R1 0_0402

R25 0_0402

R7 0_0402

CN4

NC

1
2
3
4
5
6

R230_0402

R4 0_0402

R21 0_0402

R18 0_0402

R20 0_0402

R150_0402

R190_0402 R17 0_0402

CN1

NC

1
2
3
4
5
6
7
8
9

10

R12 0_0402

R20_0402

CN3

NC

1
2
3
4
5
6
7
8

R14 0_0402

R13 0_0402

R11 0_0402

R8 0_0402

R9 0_0402

R10 0_0402

CN2

NC

1
2
3
4
5
6
7
8

R60_0402

R3 0_0402

R5

0_0402

UM2071 Schematic diagrams

 DocID029370 Rev 5 67/74

Figure 35: STEVAL-IDB008V1 BlueNRG-2

S
o
ld

e
r

a
 1

0
u
_
0
8
0
5
 b

e
tw

e
e
n

1
-2

o
r

a
 0

R
0
_
0
8
0
5
 b

e
tw

e
e
n
 1

-3

DIO3

DIO1
DIO0

D
IO

5

VBAT1

V
B

A
T
2

V
B

A
T
1

T
E

S
T
1

DIO2

V
B

A
T
2

A
D

C
1

V
B

A
T
3

D
IO

4

V
B

A
T
3

D
IO

6

J
T
M

S
-S

W
T

D
IO

J
T
C

K
-S

W
T

C
K

RESETN

DIO13
DIO12

D
IO

7

TEST

A
D

C
2

DIO14
TEST1
ADC1
ADC2

D
IO

8

DIO11

T
E

S
T

D
IO

7
D

IO
6

RESETN

DIO13
DIO12

SPI_IN
SPI_OUT
SPI_CS
SPI_CLK

SPI_CS1/RXD

DIO14

T
X

D

I2
C

2
_
D

A
T

I2
C

2
_
C

LK

V
B

L
U

E
1

V
B

L
U

E
1

V
B

L
U

E
1

V
B

L
U

E
1

V
B

L
U

E
1

V
B

L
U

E
V

B
L
U

E
1

U
1
2

B
A

L
F
-N

R
G

-0
1
D

3

B
1

1

B
2

2
A

2
3

A
1

4

Q
1

X
T

A
L
_
LS

C
1
2

T
B

D
_
0
4
02

L
3

T
B

D
_
0
4
02

L
1

T
B

D
_
0
4
02

C
3

1
0
0
p
_
0
4
02

C
2

1
0

0
n
_

0
4

02

C
1
7

1
0
0
n
_

0
4

02

C
2
1

1
0
0
n
_

0
4

02

C
2
0

1
u
_

0
4

02

R
5
5

1
0
0
k
_
0
4
02J
P

4

J
u
m

p
er

2

1
1

2
2

T
E

S
T

1

Q
2 X

T
A

L
_
H

S

J
2

S
M

A
c
o
n
ne

c
to

r

D
1

1

2

3

C
1
9

1
0

0
n
_
0
4
02

C
1

1
u
_
0
4
02

C
1
8

1
u
_
0
4
02

C
6

2
2
p
_
0
4
02

C
1
1

T
B

D
_
0
4
02

C
1
6

1
u
_
0
4
02

U
1

B
lu

e
N

R
G

-2

D
IO

10
1

D
IO

9
2

D
IO

8
3

D
IO

7
4

D
IO

6
5

V
B

A
T
3

6

D
IO

5
7

D
IO

4
8

DIO3
9

DIO2
10

DIO1
11

DIO0
12

ANATEST0/DIO14
13

ANATEST1
14

ADC1
15

ADC2
16

DIO11
32

TEST
31

DIO12
30

DIO13
29

VDD1V2
28

SMPSFILT2
27

SMPSFILT1
26

RESETN
25

V
B

A
T
1

2
4

S
X

T
A

L
0

2
3

S
X

T
A

L
1

2
2

R
F

0
2
1

R
F

1
2
0

V
B

A
T
2

1
9

F
X

T
A

L
0

1
8

F
X

T
A

L
1

1
7

GND
33

L
5

T
B

D
_
0
4
02

C
5

2
2
p
_
0
4
02

C
4

1
5
0
n
_
0
4
02

A
D

C
2

J
P

5

J
u
m

p
er

2

1
1

2
2

C
1
4

1
5
p
_
0
4
02

A
D

C
1

C
1
5

1
5

p
_

0
4

02

Schematic diagrams UM2071

68/74 DocID029370 Rev 5

Figure 36: STEVAL-IDB008V1 buttons and leds

UM2071 Schematic diagrams

 DocID029370 Rev 5 69/74

Figure 37: STEVAL-IDB008V1 sensors

SENSORs

S
P

I_
O

U
T

SPI_IN

S
P

I_
C

S

S
P

I_
C

L
K

DIO 12

I2C2_DAT

I2C2_CLK

VBLUE

VBLUE

VBLUE

VBLUE

VBL UE

VBLUE

VBL UE

R34

10K_040 2

R37

0_040 2

R35 0_040 2

R41 0_040 2

C28

100 n_040 2

C30

100 n_040 2

R42

0_040 2

U7
LSM6DS3

SDO/ SA0
1

SDx
2

SCx
3

INT1
4

V
D

D
IO

5

G
N

D
6

G
N

D
7

S
D

A
1

4

S
C

L
1

3

C
S

1
2

NC
11

OCS
10

INT2
9

VDD
8

R39

0_040 2

R36

10K_040 2

C32
100 n_040 2

R31 0_040 2

C27

4.7u_060 3

R38

0_040 2

C29

100 n_040 2

C31

100 n_040 2

U6

LPS25 HB

VDDIO
1

SCL
2

R
E

S
3

S
D

A
4

S
A

0
5

CS
6INT_DRDY
7G

N
D

8
G

N
D

9
V

D
D

1
0

Schematic diagrams UM2071

70/74 DocID029370 Rev 5

Figure 38: STEVAL-IDB008V1 power management

Figure 39: STEVAL-IDB008V1 JTAG for micro

GREEN

POWER MANAGEMENT

USB_5V

VDD VBLUEJP1

Jumper 3

1

2

3

DL4

BATT

Battery holder

C23

33n_0402

C24

2.2u_0402

R28470_0402

U3

LDS3985PU33R

Vin
1

N.C.
2

Vout
3

Vinh
6

Gnd
5

Bypass
4

G
n

d
7

C22

1u_0402

JP2

Jumper 3

1

2

3

Male Connector 2x5

JTAG FOR MICRO

JTMS
JTCK
JTDO
JTDI

VDD
CN6

CONN

12
34
56
78
910

UM2071 Schematic diagrams

 DocID029370 Rev 5 71/74

Figure 40: STEVAL-IDB008V1 USB

Figure 41: STEVAL-IDB008V1 circuit schematic TP1, TP2, TP3

Figure 42: STEVAL-IDB008V1 switch

SOT23-6L

USB

DM
DP

USBDP

USBDM

DP

DM

USB_5V

VDD

R45

0_0402

R44

0_0402

R43

NC

CN5

USB micro B

Vcc
1

D-
2

D+
3

ID
4

GND
5

GND
6

GND
7

GND
8

GND
11

GND
10

GND
9

C33

100n_0402

U9

USBLC6-2SC6

I/O11
1

GND
2

I/O21
3

I/O22
4

VBUS
5

I/O12
6

V1 V2

V3 V4

TP1

GND

TP3

GND

TP2

GND

1-2SEL=3-4SEL=H => SPI CONNECTED

TO THE BLUENRG-2

1-2SEL=3-4SEL=L => SPI NOT

CONNECTED TO THE BLUENRG-2

1-2SEL

SPI_CS1

SPI_CLK1
SPI_OUT1

SPI_IN1

3-4SEL

SPI_IN

SPI_OUT

SPI_CLK

SPI_CS1/RXD

VDD

R59 0_0402

R63

10K_0402

R61

0_0402

R58 10K_0402

R56 10K_0402

U11

STG3692

1S2
1

Vcc
2

1-2SEL
3

2S1
4

D
2

5

2
S

2
6

3
S

1
7

D
3

8

D
1

1
6

1
S

1
1
5

4
S

2
1
4

D
4

1
3

4S1
12

GND
11

3-4SEL
10

3S2
9

C45

100n_0402

R60 0_0402

R64 10K_0402 R57

10K_0402

R62

0_0402
R46 10K_0402

Schematic diagrams UM2071

72/74 DocID029370 Rev 5

Figure 43: STEVAL-IDB008V1 micro

Figure 44: STEVAL-IDB008V1 level translator

UFQFPN48 7x7 package
128 kbyte flash
16 kbyte RAM

MICRO

VLCD

OSC_IN
OSC_OUT
NRST

VDDA

USBDM
USBDP

V
D

D
3

V
D

D
1

VDD2

VLCD VDD1 VDD2 VDDA

NRST

VDD3

JTMS

J
T

C
K

J
T

D
I

J
T

D
O

TXD1

R
X

D

OE

USART1_RX
USART1_TX

USART1_TX

USART1_RX

OSC_IN

OSC_OUT

P
B

2

S
P

I_
C

S
1

S
P

I_
C

L
K

1
S

P
I_

O
U

T
1

S
P

I_
IN

1

1-2SEL
3-4SEL

DIO7

R
E

S
E

T
N

VDD VDD VDD
VDD

VDD

VDD

C35

100n_0402

C42 20p_0402

X18MHzU8

STM32L151CBU6

VLCD
1

PC13 RTC_AF1-WKUP2
2

PC14-OSC32_IN
3

PC15-OSC32_OUT
4

PH0-OSC_IN
5

PH1-OSC_OUT
6

NRST
7

VSSA
8

VDDA
9

PA0-WKUP1
10

PA1
11

PA2
12

P
A

3
1
3

P
A

4
1
4

P
A

5
1
5

P
A

6
1
6

P
A

7
1
7

P
B

0
1
8

P
B

1
1
9

P
B

2
2
0

P
B

1
0

2
1

P
B

1
1

2
2

V
S

S
_
1

2
3

V
D

D
_
1

2
4

V
D

D
_
3

4
8

V
S

S
_
3

4
7

P
B

9
4
6

P
B

8
4
5

B
O

O
T

0
4
4

P
B

7
4
3

P
B

6
4
2

P
B

5
4
1

P
B

4
4
0

P
B

3
3
9

P
A

1
5

3
8

P
A

1
4

3
7

VDD_2
36

VSS_2
35

PA13
34

PA12
33

PA11
32

PA10
31

PA9
30

PA8
29

PB15
28

PB14
27

PB13
26

PB12
25

G
N

D
4
9

R51

1M_0402

C40

100n_0402
C37

100n_0402

C38

100n_0402

C39

1u_0402
C36

100n_0402

C41

1u_0402

C43 20p_0402

R47

10K_0402

JP3

USART

1

2

3

LEVEL TRANSLATOR

OE

RXD

TXD1

PB2

TXD

SPI_CS1/RXD

DIO7

VDDVBLUE

R48

0_0402

U10

ST2378E

Vl
1

I/OVl1
2

I/OVcc2
3

I/OVl3
4

I/OVcc4
5

I/OVl5
6

I/OVcc6
7

I/OVl7
8

I/OVcc8
9

Gnd
10

Vcc
20

I/OVcc1
19

I/OVl2
18

I/OVcc3
17

I/OVl4
16

I/OVcc5
15

I/OVl6
14

I/OVcc7
13

I/OVl8
12

OE
11

R50

10k_0402

R52

0_0402

R49 0_0402

UM2071 Revision history

 DocID029370 Rev 5 73/74

20 Revision history
Table 10: Document revision history

Date Version Changes

06-Jun-2016 1 Initial release.

08-Nov-2016 2
Added Section 11: "BlueNRG-1 sensor profile central demo" and
description for ADC DMA, PDM and MFT timers.

23-Dec-2016 3
Updated STEVAL-IDB007V1 development platform and STEVAL-
IDB007V1 board components.

27-Jun-2017 4

Updated: Figure 10: "BLE demonstration and test applications", and
Section 18.9: "SPI examples ". Added: Section 16: "BLE security
demonstration applications", Section 17: "BLE power consumption
demo application", Section 18.6: "Public Key Accelerator (PKA)
demonstration application" and Section 18.7: "RNG examples". Added
reference to BlueNRG-2 device and related SW components. Add
reference to STEVAL-IDB008V1 kit and related schematics pictures.

23-Oct-2017 5
Added reference to BlueNRG-1-V1 DK SW package supporting BLE
stack v1.x family.

 UM2071

74/74 DocID029370 Rev 5

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications , and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

	1 Getting started
	1.1 Kit contents
	1.2 System requirements
	1.3 BlueNRG-1, BlueNRG-2 development kits setup

	2 Hardware description
	2.1 STEVAL-IDB007V1/STEVAL-IDB008V1 boards overview
	2.2 BlueNRG-1, BlueNRG-2 SoC connections
	2.3 Power supply
	2.4 Jumpers
	2.5 Sensors
	2.6 Extension connector
	2.7 Push-buttons
	2.8 JTAG connector
	2.9 LEDs
	2.10 STM32L151CBU6 microcontroller
	2.11 Current measurements
	2.12 Hardware setup

	3 BlueNRG-1, BlueNRG-2 Navigator
	3.1 BlueNRG-1 Navigator ‘Demonstration Applications’
	3.1.1 BlueNRG-1 Navigator ‘Basic examples’
	3.1.2 BlueNRG-1 Navigator ‘BLE demonstration and test applications’
	3.1.3 BlueNRG-1 Navigator ‘Peripherals driver examples’

	3.2 BlueNRG-1 Navigator ‘Development Kits’
	3.2.1 BlueNRG-1 Navigator ‘Release Notes’ and ‘License’

	4 BlueNRG-1 Flasher utility
	4.1 How to run
	4.2 Main user interface window
	4.2.1 Main menu items
	4.2.2 Image file selection
	4.2.3 ‘Image File’ tab
	4.2.4 ‘Device Memory’ tab
	4.2.5 Using BlueNRG-1 Flasher utility with other boards

	5 BlueNRG-1 radio parameters wizard
	5.1 How to run
	5.2 Main user interface window

	6 Programming with BlueNRG-1, BlueNRG-2 system on chip
	6.1 Software directory structure

	7 BLE beacon demonstration application
	7.1 BLE Beacon application setup
	7.1.1 Initialization
	7.1.2 Define advertising data
	7.1.3 Entering non-connectable mode

	8 BLE chat demo application
	8.1 Peripheral and central device setup
	8.1.1 Initialization
	8.1.2 Add service and characteristics
	8.1.3 Enter connectable mode
	8.1.4 Connection with central device

	9 BLE chat master and slave demo application
	9.1 BLE chat master and slave roles
	9.1.1 Initialization
	9.1.2 Add service and characteristics
	9.1.3 Start discovery procedure
	9.1.4 Enter connectable mode
	9.1.5 Connection with chat master and slave client device

	10 BLE remote control demo application
	10.1 BLE remote control application setup
	10.1.1 Initialization
	10.1.2 Define advertising data
	10.1.3 Add service and characteristics
	10.1.4 Connection with a BLE Central device

	11 BLE sensor profile demo
	11.1 BlueNRG app for smartphones
	11.2 BLE sensor profile demo: connection with a central device
	11.2.1 Initialization
	11.2.2 Add service and characteristics
	11.2.3 Enter connectable mode
	11.2.4 Connection with central device

	12 BlueNRG-1 sensor profile central demo
	13 BLE HID/HOGP demonstration application
	13.1 BLE HID/HOGP mouse demonstration application
	13.2 BLE HID/HOGP Keyboard demonstration application

	14 BLE throughput demonstration application
	14.1 BLE unidirectional throughput scenario
	14.2 BLE bidirectional throughput scenario

	15 BLE notification consumer demonstration application
	16 BLE security demonstration applications
	16.1 Peripheral device
	16.2 Central device

	17 BLE power consumption demo application
	18 BlueNRG-1, BlueNRG-2 peripheral driver examples
	18.1 ADC examples
	18.2 Flash example
	18.3 GPIO examples
	18.4 I²C examples
	18.5 Micro examples
	18.6 Public Key Accelerator (PKA) demonstration application
	18.7 RNG examples
	18.8 RTC examples
	18.9 SPI examples
	18.10 SysTick examples
	18.11 Timers examples
	18.12 UART examples
	18.13 WDG examples

	19 Schematic diagrams
	20 Revision history

