1-Bit Dual-Supply **Non-Inverting Level Translator** The NLSV1T34 is a 1-bit configurable dual-supply voltage level translator. The input A_n and output B_n ports are designed to track two different power supply rails, V_{CCA} and V_{CCB} respectively. Both supply rails are configurable from 0.9 V to 4.5 V allowing universal low-voltage translation from the input A_n to the output B_n port. #### **Features** - Wide V_{CCA} and V_{CCB} Operating Range: 0.9 V to 4.5 V - High-Speed w/ Balanced Propagation Delay - Inputs and Outputs have OVT Protection to 4.5 V - Non-preferential V_{CCA} and V_{CCB} Sequencing - Power-Off Protection - Power-Off High Impedance Inputs and Outputs - Ultra-Small Packaging: 1.45 mm x 1.0 mm ULLGA6 2.0 mm x 2.1 mm SC-88A 1.2 mm x 1.0 mm UDFN6 1.45 mm x 1.0 mm UDFN6 • These are Pb-Free Devices #### **Typical Applications** • Mobile Phones, PDAs, Other Portable Devices #### **Important Information** • ESD Protection for All Pins: HBM (Human Body Model) > 3000 V Figure 1. Logic Diagram #### ON Semiconductor® http://onsemi.com #### **MARKING DIAGRAMS** UDFN6 **MU SUFFIX** CASE 517AA UDFN6 **MU SUFFIX** CASE 517AQ **ULLGA6 MX1 SUFFIX** CASE 613AF SC-88A (SOT-353/SC-70) **DF SUFFIX CASE 419A** Q, A = Device Code = Date Code* = Pb-Free Package (Note: Microdot may be in either location) *Date Code orientation and/or position may vary depending upon manufacturing location. #### **PIN ASSIGNMENT** #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet. #### **PIN ASSIGNMENT** | PIN | FUNCTION | |------------------|-----------------------------| | V _{CCA} | Input Port DC Power Supply | | V _{CCB} | Output Port DC Power Supply | | GND | Ground | | Α | Input Port | | В | Output Port | #### **TRUTH TABLE** | INPUTS | OUTPUTS | |--------|---------| | А | В | | L | L | | Н | Н | #### **MAXIMUM RATINGS** | Symbol | Rating | | Value | Condition | Unit | |-------------------------------------|----------------------------------|---|--------------|---|------| | V _{CCA} , V _{CCB} | DC Supply Voltage | | -0.5 to +5.5 | | V | | VI | DC Input Voltage | Α | -0.5 to +5.5 | | V | | Vo | DC Output Voltage (Power Down) | В | -0.5 to +5.5 | V _{CCA} = V _{CCB} = 0 | V | | | (Active Mode) | В | -0.5 to +5.5 | | V | | I _{IK} | DC Input Diode Current | | -20 | V _I < GND | mA | | lok | DC Output Diode Current | | -50 | V _O < GND | mA | | lo | DC Output Source/Sink Current | | ±50 | | mA | | I _{CCA} , I _{CCB} | DC Supply Current Per Supply Pin | | ±100 | | mA | | I _{GND} | DC Ground Current per Ground Pin | | ±100 | | mA | | T _{STG} | Storage Temperature | | -65 to +150 | | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. #### **RECOMMENDED OPERATING CONDITIONS** | Symbol | Parameter | Min | Max | Unit | | |-------------------------------------|---|-----|-----|------------------|---| | V _{CCA} , V _{CCB} | Positive DC Supply Voltage | | 0.9 | 4.5 | V | | VI | Bus Input Voltage | | GND | 4.5 | V | | V _{IO} | Bus Output Voltage (Power Down Mode) | В | GND | 4.5 | V | | | (Active Mode) | В | GND | V _{CCB} | V | | T _A | Operating Temperature Range | -40 | +85 | °C | | | Δt / ΔV | Input Transition Rise or Rate V _I , from 30% to 70% of V _{CC} ; V _{CC} = 3.3 V \pm 0.3 V | 0 | 10 | nS | | #### DC ELECTRICAL CHARACTERISTICS | | | | | | -40°C to | o +85°C | | |------------------|---------------------------|--|----------------------|----------------------|-------------------------|-------------------------|------| | Symbol | Parameter | Test Conditions | V _{CCA} (V) | V _{CCB} (V) | Min | Max | Unit | | V _{IH} | Input HIGH Voltage | | 3.6 – 4.5 | 0.9 – 4.5 | 2.2 | - | V | | | | | 2.7 – 3.6 | | 2.0 | - | | | | | | 2.3 – 2.7 | 1 | 1.6 | - | | | | | | 1.4 – 2.3 | 1 | 0.65 * V _{CCA} | _ | 1 | | | | | 0.9 – 1.4 | 1 | 0.9 * V _{CCA} | - | | | V _{IL} | Input LOW Voltage | | 3.6 – 4.5 | 0.9 – 4.5 | - | 0.8 | V | | | | | 2.7 – 3.6 | 1 | - | 0.8 | | | | | | 2.3 – 2.7 | 1 | - | 0.7 | | | | | | 1.4 – 2.3 | 1 | - | 0.35 * V _{CCA} | | | | | | 0.9 – 1.4 | | - | 0.1 * V _{CCA} | | | V _{OH} | Output HIGH Voltage | $I_{OH} = -100 \mu A; V_I = V_{IH}$ | 0.9 – 4.5 | 0.9 – 4.5 | V _{CCB} - 0.2 | - | V | | | | $I_{OH} = -0.5 \text{ mA}; V_I = V_{IH}$ | 0.9 | 0.9 | 0.75 * V _{CCB} | - | | | | | $I_{OH} = -2 \text{ mA}; V_I = V_{IH}$ | 1.4 | 1.4 | 1.05 | - | | | | | $I_{OH} = -6 \text{ mA}; V_I = V_{IH}$ | 1.65 | 1.65 | 1.25 | _ | 1 | | | | | 2.3 | 2.3 | 2.0 | - | | | | | $I_{OH} = -12 \text{ mA}; V_I = V_{IH}$ | 2.3 | 2.3 | 1.8 | - | | | | | | 2.7 | 2.7 | 2.2 | - | | | | | $I_{OH} = -18 \text{ mA}; V_I = V_{IH}$ | 2.3 | 2.3 | 1.7 | _ | | | | | | 3.0 | 3.0 | 2.4 | - | | | | | $I_{OH} = -24 \text{ mA}; V_I = V_{IH}$ | 3.0 | 3.0 | 2.2 | _ | 1 | | V _{OL} | Output LOW Voltage | $I_{OL} = 100 \mu A; V_I = V_{IL}$ | 0.9 – 4.5 | 0.9 – 4.5 | - | 0.2 | V | | | | $I_{OL} = 0.5 \text{ mA}; V_I = V_{IH}$ | 1.1 | 1.1 | - | 0.3 | | | | | $I_{OL} = 2 \text{ mA}; V_I = V_{IH}$ | 1.4 | 1.4 | - | 0.35 | | | | | $I_{OL} = 6 \text{ mA}; V_I = V_{IL}$ | 1.65 | 1.65 | - | 0.3 | | | | | I_{OL} = 12 mA; V_I = V_{IL} | 2.3 | 2.3 | - | 0.4 | | | | | | 2.7 | 2.7 | - | 0.4 | | | | | I_{OL} = 18 mA; V_I = V_{IL} | 2.3 | 2.3 | - | 0.6 | | | | | | 3.0 | 3.0 | - | 0.4 | | | | | I_{OL} = 24 mA; V_I = V_{IL} | 3.0 | 3.0 | - | 0.55 | | | I _I | Input Leakage Current | V _I = V _{CCA} or GND | 0.9 – 4.5 | 0.9 – 4.5 | -1.0 | 1.0 | μΑ | | I _{CCA} | Quiescent Supply Current | $V_I = V_{CCA}$ or GND;
$I_O = 0$, $V_{CCA} = V_{CCB}$ | 0.9 – 4.5 | 0.9 – 4.5 | - | 2.0 | μΑ | | I _{CCB} | Quiescent Supply Current | $V_I = V_{CCA}$ or GND;
$I_O = 0$, $V_{CCA} = V_{CCB}$ | 0.9 – 4.5 | 0.9 – 4.5 | - | 2.0 | μΑ | | CCA + ICCB | Quiescent Supply Current | $V_I = V_{CCA}$ or GND;
$I_O = 0$, $V_{CCA} = V_{CCB}$ | 0.9 – 4.5 | 0.9 – 4.5 | - | 4.0 | μΑ | | l _{OFF} | Power OFF Leakage Current | V _I = 4.5 V | 0 | 0 | - | 5.0 | μΑ | ## TOTAL STATIC POWER CONSUMPTION (I_{CCA} + I_{CCB}) | | | -40°C to +85°C | | | | | | | | | | |----------------------|-----|----------------|-----|-------|------------------|------------------|-----|-------|-----|-------|------| | | | | | | V _{CCI} | _B (V) | | | | | | | | 4 | 4.5 3.3 | | | | .8 | 1. | .8 | 0.9 | | | | V _{CCA} (V) | Min | Max | Unit | | 4.5 | | 2 | | 2 | | 2 | | 2 | | < 1.5 | μΑ | | 3.3 | | 2 | | 2 | | 2 | | 2 | | < 1.5 | μА | | 2.8 | | < 2 | | < 1 | | < 1 | | < 0.5 | | < 0.5 | μА | | 1.8 | | < 1 | | < 1 | | < 0.5 | | < 0.5 | | < 0.5 | μА | | 0.9 | | < 0.5 | | < 0.5 | | < 0.5 | | < 0.5 | | < 0.5 | μΑ | NOTE: Connect ground before applying supply voltage V_{CCA} or V_{CCB}. This device is designed with the feature that the power–up sequence of V_{CCA} and V_{CCB} will not damage the IC. #### **AC ELECTRICAL CHARACTERISTICS** | | | | | -40°C to +85°C | | | | | | | | | | |------------------------------|-------------|----------------------|-----|---------------------|-----|-----|-----------------|------------------|-----|-----|-----|-----|------| | | | | | | | | V _{CC} | _B (V) | | | | | | | | | | 4 | 4.5 3.3 2.8 1.8 1.2 | | | | | | | | | | | Symbol | Parameter | V _{CCA} (V) | Min | Max | Unit | | t _{PLH} , | Propagation | 4.5 | | 1.6 | | 1.8 | | 2.0 | | 2.1 | | 2.3 | nS | | t _{PHL}
(Note 1) | Delay, | 3.3 | | 1.7 | | 1.9 | | 2.1 | | 2.3 | | 2.6 | | | (Note 1) | A to B | 2.8 | | 1.9 | | 2.1 | | 2.3 | | 2.5 | | 2.8 | | | | | 1.8 | | 2.1 | | 2.4 | | 2.5 | | 2.7 | | 3.0 | | | | | 1.2 | | 2.4 | | 2.7 | | 2.8 | | 3.0 | | 3.3 | | ^{1.} Propagation delays defined per Figure 2. #### **CAPACITANCE** | Symbol | Parameter | Test Conditions | Typ (Note 2) | Unit | |------------------|-------------------------------|--|--------------|------| | C _{I/O} | I/O Pin Input Capacitance | $V_{CCA} = V_{CCB} = 3.3 \text{ V}, V_I = 0 \text{ V or } V_{CCA/B}$ | 5.0 | pF | | C _{PD} | Power Dissipation Capacitance | $V_{CCA} = V_{CCB} = 3.3 \text{ V}, V_I = 0 \text{ V or } V_{CCA}, f = 10 \text{ MHz}$ | 5.0 | pF | Typical values are at T_A = +25°C. C_{PD} is defined as the value of the IC's equivalent capacitance from which the operating current can be calculated from: I_{CC(operating)} ≅ C_{PD} x V_{CC} x f_{IN} where I_{CC} = I_{CCA} + I_{CCB}. Figure 2. AC (Propagation Delay) Test Circuit Figure 3. AC (Propagation Delay) Test Circuit Waveforms | | V _{CC} | |-----------------|---------------------| | Symbol | 0.9 V – 4.5 V | | V_{mA} | V _{CCA} /2 | | V _{mB} | V _{CCB} /2 | #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |-----------------|---------------------|-----------------------| | NLSV1T34MUTBG | UDFN6
(Pb-Free) | 3000 / Tape & Reel | | NLSV1T34AMUTCG | UDFN6
(Pb-Free) | 3000 / Tape & Reel | | NLSV1T34AMX1TCG | ULLGA6
(Pb-Free) | 3000 / Tape & Reel | | NLSV1T34DFT2G | SC-88A
(Pb-Free) | 3000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### **PACKAGE DIMENSIONS** #### SC-88A, SOT-353, SC-70 CASE 419A-02 **ISSUE J** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A-01 OBSOLETE. NEW STANDARD 419A-02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. | | INC | HES | MILLIN | IETERS | | |-----|-------|-------|----------|--------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 0.071 | 0.087 | 1.80 | 2.20 | | | В | 0.045 | 0.053 | 1.15 | 1.35 | | | C | 0.031 | 0.043 | 0.80 | 1.10 | | | D | 0.004 | 0.012 | 0.10 | 0.30 | | | G | 0.026 | BSC | 0.65 BSC | | | | H | | 0.004 | | 0.10 | | | 7 | 0.004 | 0.010 | 0.10 | 0.25 | | | K | 0.004 | 0.012 | 0.10 | 0.30 | | | N | 0.008 | REF | 0.20 REF | | | | S | 0.079 | 0.087 | 2.00 | 2.20 | | #### **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### **PACKAGE DIMENSIONS** # **UDFN6, 1.2x1.0, 0.4P**CASE 517AA-01 ISSUE C #### **PACKAGE DIMENSIONS** # UDFN6, 1.45x1.0, 0.5P CASE 517AQ-01 Mounting Techniques Reference Manual, SOLDERRM/D. **BOTTOM VIEW** #### PACKAGE DIMENSIONS ULLGA6 1.45x1.0, 0.5P CASE 613AF-01 **ISSUE A** #### NOTES: - DIMENSIONING AND TOLERANCING PER - ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND - 0.30 mm FROM THE TERMINAL TIP. A MAXIMUM OF 0.05 PULL BACK OF THE PLATED TERMINAL FROM THE EDGE OF THE PACKAGE IS ALLOWED. | | MILLIMETERS | | | | | | |-----|-------------|------|--|--|--|--| | DIM | MIN | MAX | | | | | | Α | | 0.40 | | | | | | A1 | 0.00 | 0.05 | | | | | | b | 0.15 | 0.25 | | | | | | D | 1.45 | BSC | | | | | | Е | 1.00 | BSC | | | | | | е | 0.50 | BSC | | | | | | L | 0.25 | 0.35 | | | | | | L1 | 0.30 | 0.40 | | | | | #### **MOUNTING FOOTPRINT SOLDERMASK DEFINED*** DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative