MC14598B

8-Bit Bus-Compatible Latches

The MC14598B is an 8-bit latch addressed with an external binary address. The 8 latch-outputs are high drive, three-state and bus line compatible. The drive capability allows direct applications with MPU systems such as the Motorola 6800 family.

The latches of the MC14598B are accessed via the Address pins, A0, A1, and A2.

All 8 outputs from the latches are available in parallel when Enable is in the low state. Data is entered into a selected latch from the Data pin when the Strobe is high. Master reset is available on both parts.

- Serial Data Input
- Three-State Bus Compatible Parallel Outputs
- Three-State Control Pin ($\overline{\text { Enable }})$ TTL Compatible Input
- Open Drain Full Flag (Multiple Latch Wire-O Ring)
- Master Reset
- Level Shifting Inputs on All Except Enable
- Diode Protection - All Inputs
- Supply Voltage Range - 3.0 Vdc to 18 Vdc
- Capable of Driving TTL Over Rated Temperature Range With Fanout as Follows:

1 TTL Load
4 LSTTL Loads

- This device is available in Pb -free package(s). Specifications herein apply to both standard and $\mathrm{Pb}-$ free devices. Please see our website at www.onsemi.com for specific Pb-free orderable part numbers, or contact your local ON Semiconductor sales office or representative.

MAXIMUM RATINGS (Voltages Referenced to V_{SS}) (Note 1.)

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
$\mathrm{~V}_{\text {in }}$	Input Voltage Range, Enable (DC or Transient)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{~V}_{\text {in }}$	Input Voltage Range, All Other Inputs (DC or Transient)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+12$	V
$\mathrm{~V}_{\text {out }}$	Output Voltage Range, (DC or Transient)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}, \mathrm{I}_{\text {out }}$	Input or Output Current (DC or Transient) per Pin	± 10	mA
P_{D}	Power Dissipation, per Package (Note 2.)	500	mW
$\mathrm{~T}_{\mathrm{A}}$	Ambient Temperature Range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (8-Second Soldering)	260	${ }^{\circ} \mathrm{C}$

1. Maximum Ratings are those values beyond which damage to the device may occur.
2. Temperature Derating:

Plastic "P and D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$

ON Semiconductor

http://onsemi.com

$\begin{aligned} & \text { PDIP-18 } \\ & \text { P SUFFIX } \\ & \text { CASE } 707 \end{aligned}$	MARKING DIAGRAMS 18
	ם
A	= Assembly Location
WL, L	= Wafer Lot
YY, Y	= Year
WW, W	= Work Week

ORDERING INFORMATION

Device	Package	Shipping
MC14598BCP	PDIP-18	20/Rail

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

MC14598B

PIN ASSIGNMENT		
D0	$1 \bullet$	18
RESET	2	17
DATA	3	16
ENABLE [4	15
NC [5	14
STROBE	6	13
A0 0	7	12
A1	8	11
$\mathrm{V}_{\text {SS }}$	9	10

BLOCK DIAGRAMS

OUTPUT
TRUTH TABLE

Enable	Outputs
1	High Impedance
0	D_{n}

$D_{n}=$ State of nth latch

NC = NO CONNECTION

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	$V_{D D}$ Vdc	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ ${ }^{(3 .)}$	Max	Min	Max	
$\begin{aligned} & \text { Output Voltage } \\ & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{DD}} \text { or } 0 \end{aligned}$	VOL	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	二	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	二	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
"1" Level $V_{\text {in }}=0 \text { or } V_{D D}$	V_{OH}	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
$\begin{aligned} & \text { Input Voltage (4.) - Enable "0" Level } \\ & \text { (} \left.V_{0}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) \\ & \left(V_{O}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) \\ & \left(V_{0}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) \\ & \\ & \\ & \left(V_{O}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) \\ & \left(V_{O}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ & \left(V_{O}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{aligned}$	V_{IL}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.8 \\ & 1.6 \\ & 2.4 \end{aligned}$	-	$\begin{aligned} & 1.1 \\ & 2.2 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.6 \\ & 2.4 \end{aligned}$	-	$\begin{aligned} & 0.8 \\ & 1.6 \\ & 2.4 \end{aligned}$	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 6.0 \\ & 10 \end{aligned}$	-	$\begin{aligned} & 2.0 \\ & 6.0 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 3.1 \\ & 4.3 \end{aligned}$	-	$\begin{aligned} & 2.0 \\ & 6.0 \\ & 10 \end{aligned}$	-	Vdc
Input Voltage " 0 " Level Other Inputs ($\mathrm{V}_{0}=4.5$ or 0.5 Vdc$)$ $\left(\mathrm{V}_{0}=9.0\right.$ or 1.0 Vdc$)$ $\left(\mathrm{V}_{\mathrm{O}}=13.5\right.$ or 1.5 Vdc$)$ 	V_{IL}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
$\begin{aligned} & \left(V_{O}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) \quad \text { " } 1 " \text { Level } \\ & \left(V_{O}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{aligned}$	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{aligned} & \hline 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	Vdc
Output Drive Current Source (Full - Sink Only) ($\left.\mathrm{VOH}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right)$ $\left(\mathrm{VOH}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$	IOH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-1.0 -	-	-1.0 -	-2.0 -6.0 -12	-	-1.0 -	-	mAdc
$\begin{array}{ll} \left(V_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) & \text { Sink } \\ \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) & \end{array}$	${ }^{\text {IOL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	1.6	-	1.6	3.2 6.0 12	-	1.6	-	mAdc
Input Current	$\mathrm{l}_{\text {in }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Three-State Leakage Current	$\mathrm{I}_{\text {TL }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 3.0	$\mu \mathrm{Adc}$
Input Capacitance ($\mathrm{V}_{\text {in }}=0$)	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	IDD	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \hline 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \hline 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current at an External Load Capacitance of 130 pF (4.)	I_{T}	$\begin{aligned} & 5.0 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(2.0 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(4.0 \mu \mathrm{AHz} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(6.0 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \end{aligned}$							$\mu \mathrm{Adc}$

3. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
4. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.

SWITCHING CHARACTERISTICS (5.) $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=130 \mathrm{pF}+1\right.$ TTL Load)

Characteristic	Symbol	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{Vdc} \end{aligned}$	All Types			Unit
			Min	Typ (6.)	Max	
Output Rise and Fall Time $\begin{aligned} & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+35 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(0.2 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(0.16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}}, \\ & \mathrm{t}_{\mathrm{TH}}, \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
Propagation Delay Time Enable to Output Strobe to Output	$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 160 \\ & 125 \\ & 100 \end{aligned}$	$\begin{aligned} & 320 \\ & 250 \\ & 200 \end{aligned}$	ns
		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	$\begin{aligned} & \hline 400 \\ & 200 \\ & 160 \end{aligned}$	
Reset to Output		$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 175 \\ & 90 \\ & 70 \end{aligned}$	$\begin{aligned} & \hline 350 \\ & 180 \\ & 140 \end{aligned}$	
Pulse Width Enable Strobe	$t_{W H}$, $t_{W L}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 320 \\ & 240 \\ & 160 \end{aligned}$	$\begin{aligned} & 160 \\ & 120 \\ & 80 \end{aligned}$	-	ns
		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 200 \\ 100 \\ 80 \end{gathered}$	$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	-	
Increment Reset		$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 200 \\ 100 \\ 80 \end{gathered}$	$\begin{gathered} \hline 100 \\ 50 \\ 40 \end{gathered}$	-	
		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 300 \\ & 160 \\ & 100 \end{aligned}$	$\begin{aligned} & 150 \\ & 80 \\ & 50 \end{aligned}$	-	
Setup Time Data	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 100 \\ & 50 \\ & 35 \end{aligned}$	$\begin{aligned} & 50 \\ & 25 \\ & 20 \end{aligned}$	-	ns
Address		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 200 \\ 100 \\ 70 \end{gathered}$	$\begin{aligned} & 100 \\ & 50 \\ & 35 \end{aligned}$	-	
Hold Time Data	$t_{\text {h }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 100 \\ 50 \\ 35 \end{gathered}$	$\begin{aligned} & 50 \\ & 25 \\ & 20 \end{aligned}$	-	ns
Address		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 100 \\ & 50 \\ & 35 \end{aligned}$	$\begin{aligned} & 50 \\ & 25 \\ & 20 \end{aligned}$	-	
Reset Removal Time	$\mathrm{t}_{\text {rem }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & -25 \\ & -15 \\ & -10 \end{aligned}$	-	ns

5. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

MC14598B FUNCTION DIAGRAM

MC14598B TIMING DIAGRAM

*1.4 V with $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
NOTES:

1. High-impedance output state (another device controls bus).
2. Output Load as for MC14597B.

LATCH TRUTH TABLE

Strobe	Reset	Address Latch	Other Latches
0	1	${ }^{*}$	${ }^{*}$
1	1	Data	${ }^{*}$
X	0	0	0

* $=$ No change in state of latch

X = Don't care

TRUTH TABLE FOR MC14597B

Increment	Enable	Reset	Address Counter	Full
\sim	X	1	Count Up	-
Ω	X	1	No Change	-
X	1	0	Reset to Zero	Set to One
X	0	1	No Change	Set to One
X	1	1	If at ADDRESS 7 7	To Zero on Falling Edge of STROBE

X = Don't care

TEST LOAD ALL OUTPUTS

Circuit diagrams external to or containing Motorola products are included as a means of illustration only. Complete information sufficient for construction purposes may not be fully illustrated. Although the information herein has been carefully checked and is believed to be reliable. Motorola assumes no responsibility for inaccuracies. Information herein does not convey to the purchaser any license under the patent rights of Motorola or others.

The information contained herein is for guidance only, with no warranty of any type, expressed or implied. Motorola reserves the right to make any changes to the information and the product(s) to which the information applies and to discontinue manufacture of the product(s) at any time.

PACKAGE DIMENSIONS

PDIP-18
P SUFFIX
PLASTIC DIP PACKAGE
CASE 707-02
ISSUE C

NOTES:

1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25 (0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
4. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.875	0.915	22.22	23.24
B	0.240	0.260	6.10	6.60
C	0.140	0.180	3.56	4.57
D	0.014	0.022	0.36	0.56
F	0.050	0.070	1.27	1.78
G	0.100 BSC		2.54 BSC	
H	0.040	0.060	1.02	1.52
J	0.008	0.012	0.20	0.30
K	0.115	0.135	2.92	3.43
L	0.300 BSC		7.62 BSC	
M	0°	15°	$0{ }^{\circ}$	15°
N	0.020	0.040	0.51	1.02

ON Semiconductor and (1N) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA

Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada
Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

