Power MOSFET 14 Amps, 25 Volts

N–Channel DPAK

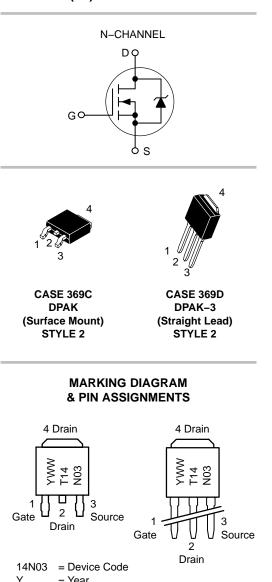
Features

- Planar HD3e Process for Fast Switching Performance
- Low R_{DS(on)} to Minimize Conduction Loss
- Low C_{iss} to Minimize Driver Loss
- Low Gate Charge
- Optimized for High Side Switching Requirements in High–Efficiency DC–DC Converters
- Pb–Free Packages are Available

Parameter	Symbol	Value	Unit		
Drain-to-Source Voltage	V _{DSS}	25	Vdc		
Gate-to-Source Voltage - Continuous	V _{GS}	±20	Vdc		
Thermal Resistance – Junction–to–Case Total Power Dissipation @ $T_A = 25^{\circ}C$ Drain Current – Continuous @ $T_A = 25^{\circ}C$, Chip – Continuous @ $T_A = 25^{\circ}C$, Limited by Package – Single Pulse (tp $\leq 10 \ \mu$ s)	R _{θJC} P _D I _D I _D	6.0 20.8 14 11.4 28	°C/W W A A A		
Thermal Resistance, Junction-to-Ambient (Note 1) Total Power Dissipation @ T _A = 25°C Drain Current – Continuous @ T _A = 25°C	R _{θJA} P _D I _D	80 1.56 3.1	°C/W W A		
Thermal Resistance, Junction–to–Ambient (Note 2) Total Power Dissipation @ $T_A = 25^{\circ}C$ Drain Current – Continuous @ $T_A = 25^{\circ}C$	R _{θJA} P _D I _D	120 1.04 2.5	°C/W W A		
Operating and Storage Temperature Range	T _J , T _{stg}	–55 to 150	°C		
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	ΤL	260	°C		

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise specified)

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


- 1. When surface mounted to an FR4 board using 0.5 sq. in pad size.
- When surface mounted to an FR4 board using minimum recommended pad size.

ON Semiconductor®

http://onsemi.com

14 AMPERES, 25 VOLTS $R_{DS(on)} = 70.4 \text{ m}\Omega$ (Typ)

ORDERING INFORMATION

= Work Week

WW

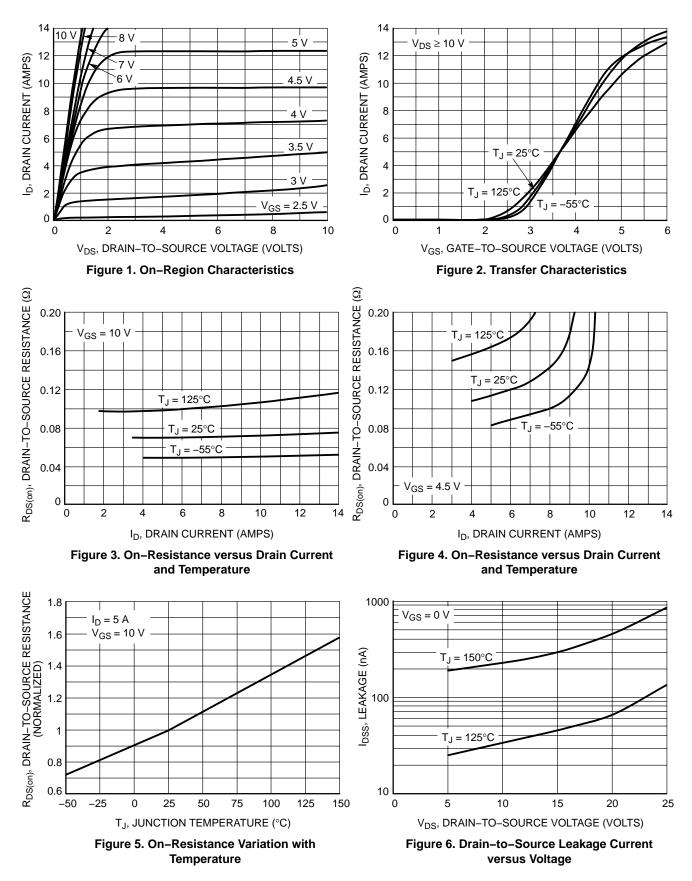
See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

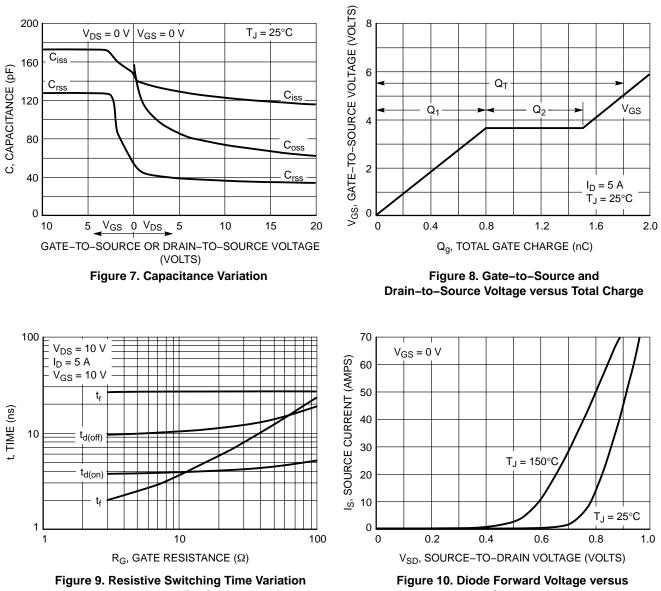
ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

C	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Drain–to–Source Breakdown \ (V _{GS} = 0 Vdc, I _D = 2 Temperature Coefficient (Posit	V(br) _{DSS}	25 -	28 -		Vdc mV/°C	
Zero Gate Voltage Drain Curre $(V_{DS} = 20 \text{ Vdc}, V_{GS} (V_{DS} = 20 \text{ Vdc}, V_{GS})$	I _{DSS}			1.0 10	μAdc	
Gate-Body Leakage Current ($V_{GS} = \pm 20$ Vdc, V_{DS}	I _{GSS}	-	-	±100	nAdc	
ON CHARACTERISTICS (Not	e 3)					
Gate Threshold Voltage (Note $(V_{DS} = V_{GS}, I_D = 250)$ Threshold Temperature Coeffic	V _{GS(th)}	1.0	1.5 _	2.0	Vdc mV/°C	
Static Drain-to-Source On-Re $(V_{GS} = 4.5 \text{ Vdc}, I_D = (V_{GS} = 10 \text{ Vdc}, I_D = $	R _{DS(on)}		117 70.4	130 95	mΩ	
Forward Transconductance (N $(V_{DS} = 10 \text{ Vdc}, I_D = $	9fs	-	7.0	-	Mhos	
DYNAMIC CHARACTERISTIC	S					
Input Capacitance		C _{iss}	-	115	-	pF
Output Capacitance	$(V_{DS} = 20 \text{ Vdc}, V_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz})$	C _{oss}	-	62	-	
Transfer Capacitance		C _{rss}	-	33	-	
SWITCHING CHARACTERIS	TICS (Note 4)					
Turn–On Delay Time		t _{d(on)}	-	3.8	-	ns
Rise Time	(V _{GS} = 10 Vdc, V _{DD} = 10 Vdc,	t _r	-	27	-	
Turn-Off Delay Time	$I_D = 5 \text{ Adc}, R_G = 3 \Omega$)	t _{d(off)}	-	9.6	-	
Fall Time		t _f	-	2.0	-	1
Gate Charge		QT	-	1.8	-	nC
	$(V_{GS} = 5 \text{ Vdc}, I_D = 5 \text{ Adc}, V_{DS} = 10 \text{ Vdc})$ (Note 3)	Q ₁	-	0.8	-	
		Q ₂	-	0.7	-	
SOURCE-DRAIN DIODE CHA	ARACTERISTICS					
Forward On–Voltage	$(I_S = 5 \text{ Adc}, V_{GS} = 0 \text{ Vdc}) \text{ (Note 3)}$ $(I_S = 5 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$	V _{SD}		0.93 0.82	1.2 -	V _{dc}
Reverse Recovery Time		t _{rr}	-	6.6	-	ns
	(I _S = 5 Adc, V _{GS} = 0 Vdc,	t _a	-	4.75	-	
	$dI_S/dt = 100 \text{ A/}\mu\text{s}$ (Note 3)	t _b	-	1.88	-	

Reverse Recovery Stored Charge

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.


0.002

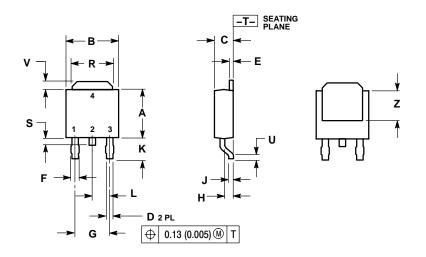

_

μC

_

 $\mathsf{Q}_{\mathsf{R}\mathsf{R}}$

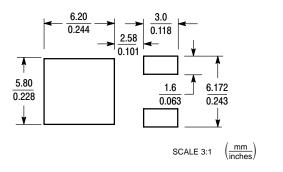
versus Gate Resistance


ORDERING INFORMATION

Device	Package	Shipping [†]	
NTD14N03R	DPAK	75 Units / Rail	
NTD14N03RG	DPAK (Pb–Free)	75 Units / Rail	
NTD14N03R-001	DPAK-3	75 Units / Rail	
NTD14N03R-1G	DPAK-3 (Pb-Free)	75 Units / Rail	
NTD14N03RT4	DPAK	2500 Tape & Reel	
NTD14N03RT4G	DPAK (Pb–Free)	2500 Tape & Reel	

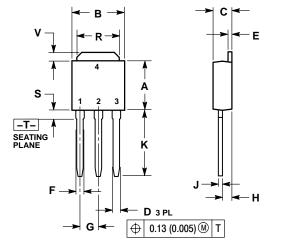
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

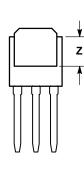
PACKAGE DIMENSIONS



NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETER		
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.22	
в	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.180 BSC		4.58 BSC		
н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
κ	0.102	0.114	2.60	2.89	
L	0.090 BSC		2.29 BSC		
R	0.180	0.215	4.57	5.45	
S	0.025	0.040	0.63	1.01	
U	0.020		0.51		
V	0.035	0.050	0.89	1.27	
Ζ	0.155		3.93		


STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN


SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DPAK-3 (SINGLE GAUGE / SRAIGHT LEAD) CASE 369D-01 ISSUE B

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETER	
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090 BSC		2.29 BSC	
н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
κ	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
V	0.035	0.050	0.89	1.27
Z	0.155		3.93	

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personal states CILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.