8-Bit Serial-Input/Serial or Parallel-Output Shift Register with Latched 3-State Outputs

High-Performance Silicon-Gate CMOS

MC74HC595A, MC74HCT595A

The MC74HC595A/MC74HCT595A consists of an 8-bit shift register and an 8-bit D-type latch with three-state parallel outputs. The shift register accepts serial data and provides a serial output. The shift register also provides parallel data to the 8 -bit latch. The shift register and latch have independent clock inputs. This device also has an asynchronous reset for the shift register.

The device directly interfaces with the SPI serial data port on CMOS MPUs and MCUs. The MC74HC595A device inputs are compatible Standard CMOS outputs; with pullup resistors, they are compatible with TTL outputs. The MC74HCT595A device inputs are compatible Standard CMOS or TTL outputs.

Features

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V (HC), 4.5 to 5.5 V (HCT)
- Low Input Current: $1.0 \mu \mathrm{~A}$
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7 A
- Chip Complexity: 328 FETs or 82 Equivalent Gates
- Improvements over HC595/HCT595
- Improved Propagation Delays
- 50% Lower Quiescent Power
- Improved Input Noise and Latchup Immunity
- -Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free and are RoHS Compliant

ORDERING INFORMATION

See detailed ordering and shipping information on page 13 of this data sheet.

MC74HC595A, MC74HCT595A

Figure 1. Pin Assignments

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V_{CC}	DC Supply Voltage		-0.5 to +6.5	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage		-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage		-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
In	DC Input Current, per Pin		± 20	mA
Iout	DC Output Current, per Pin		± 35	mA
ICC	DC Supply Current, $\mathrm{V}_{\text {CC }}$ and GND Pins		± 75	mA
IIK	Input Clamp Current ($\mathrm{V}_{\text {IN }}<0$ or $\mathrm{V}_{\text {IN }}>\mathrm{V}_{\mathrm{CC}}$)		± 20	mA
Iok	Output Clamp Current ($\mathrm{V}_{\text {OUT }}<0$ or $\mathrm{V}_{\text {OUT }}>\mathrm{V}_{\text {CC }}$)		± 20	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature		-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds		260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias		± 150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Note 1)	$\begin{array}{r} \text { SOIC-16 } \\ \text { QFN16 } \\ \text { TSSOP-16 } \end{array}$	$\begin{aligned} & 126 \\ & 118 \\ & 159 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	Power Dissipation in Still Air at $25^{\circ} \mathrm{C}$	$\begin{array}{r} \text { SOIC-16 } \\ \text { QFN16 } \\ \text { TSSOP-16 } \end{array}$	$\begin{gathered} 995 \\ 1062 \\ 787 \end{gathered}$	mW
MSL	Moisture Sensitivity		Level 1	-
F_{R}	Flammability Rating	Oxygen Index: 28 to 34	$\begin{aligned} & \hline \text { UL } 94 \text { V-0 @ } \\ & 0.125 \text { in } \end{aligned}$	-
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage (Note 2)	Human Body Model Charged Device Model	$\begin{gathered} >3000 \\ \text { N/A } \end{gathered}$	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured with minimum pad spacing on an FR4 board, using 76 mm -by-114mm, 2-ounce copper trace no air flow per JESD51-7.
2. HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
MC74HC					
V_{CC}	DC Supply Voltage		2.0	6.0	V
$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$	DC Input Voltage, Output Voltage (Note 3)		0	V_{CC}	V
T_{A}	Operating Free-Air Temperature		-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}} \mathrm{tf}_{\text {f }}$	Input Rise or Fall Time	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1000 \\ & 500 \\ & 400 \end{aligned}$	ns

MC74HCT

V_{CC}	DC Supply Voltage	4.5	5.5	V
$\mathrm{~V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$	DC Input Voltage, DC Output Voltage (Note 3)	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Free-Air Temperature	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise or Fall Time	0	500	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
3. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

DC ELECTRICAL CHARACTERISTICS (MC74HC595A)

Symbol	Parameter	Test Conditions	$\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
				$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\text {CC }}-0.1 \mathrm{~V} \\ & \mid \text { lout } \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	V
VIL	Maximum Low-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\text {CC }}-0.1 \mathrm{~V} \\ & \mid l_{\text {OUT }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	V
VOH	Minimum High-Level Output Voltage, $Q_{A}-Q_{H}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}					V
		$\left\|l_{\text {OUT }}\right\| \leq 20 \mu \mathrm{~A}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	
		$\mid \mathrm{l}$ Out $\mid \leq 2.4 \mathrm{~mA}$ $\|\mathrm{lout}\| \leq 6.0 \mathrm{~mA}$ $\|\mathrm{lout}\| \leq 7.8 \mathrm{~mA}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.48 \\ & 3.98 \\ & 5.48 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.34 \\ & 3.84 \\ & 5.34 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \\ & 3.7 \\ & 5.2 \end{aligned}$	
$\mathrm{V}_{\text {OL }}$	Minimum Low-Level Output Voltage, $Q_{A}-Q_{H}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or V_{IL}					V
		$\left\|l_{\text {OUT }}\right\| \leq 20 \mu \mathrm{~A}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	
		\mid lout $\mid \leq 2.4 \mathrm{~mA}$ $\|\mathrm{lout}\| \leq 6.0 \mathrm{~mA}$ $\|\mathrm{lout}\| \leq 7.8 \mathrm{~mA}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \\ & 0.26 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \\ & 0.33 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \\ & \hline \end{aligned}$	
V_{OH}	Minimum High-Level Output Voltage, SQ_{H}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}					V
		$\left\|l_{\text {OUT }}\right\| \leq 20 \mu \mathrm{~A}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	
		$\left\|\begin{array}{l}\text { lout }\end{array}\right\| \leq 2.4 \mathrm{~mA}$ $\mid \mathrm{lout}$ \mid lout $\leq 4.0 \mathrm{~mA}$ $\leq 5.2 \mathrm{~mA}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 2.48 \\ & 3.98 \\ & 5.48 \end{aligned}$	$\begin{aligned} & 2.34 \\ & 3.84 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 3.7 \\ & 5.2 \end{aligned}$	
$\mathrm{V}_{\text {OL }}$	Minimum Low-Level Output Voltage, SQ_{H}	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$					V
		$\left\|l_{\text {OUT }}\right\| \leq 20 \mu \mathrm{~A}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	
		$\begin{aligned} & \mid \text { lout } \mid \leq 2.4 \mathrm{~mA} \\ & \mid \text { Iout } \mid \leq 4.0 \mathrm{~mA} \\ & \mid \text { lout } \mid \leq 5.2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \\ & 0.33 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \\ & \hline \end{aligned}$	
In	Maximum Input Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	6.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
loz	Maximum Three-State Leakage Current	Output in High-Impedance State $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH} $V_{\text {OUT }}=V_{\text {CC }}$ or GND	6.0	± 0.5	± 5.0	± 10	$\mu \mathrm{A}$
I_{CC}	Maximum Quiescent Supply Current (per Package)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	6.0	4.0	40	160	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS (MC74HC595A)

Symbol	Parameter	$\underset{\mathbf{V}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
			-55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency (50\% Duty Cycle) (Figures 1 and 7)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 15 \\ & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 10 \\ & 24 \\ & 28 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 8.0 \\ & 20 \\ & 24 \end{aligned}$	MHz
$\begin{aligned} & \text { tpLH, } \\ & t_{\text {PHL }} \end{aligned}$	Maximum Propagation Delay, Shift Clock to SQ_{H} (Figures 1 and 7)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 140 \\ 100 \\ 28 \\ 24 \end{gathered}$	$\begin{aligned} & 175 \\ & 125 \\ & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 210 \\ & 150 \\ & 42 \\ & 36 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{PHL}}$	Maximum Propagation Delay, Reset to SQ $_{H}$ (Figures 2 and 7)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 145 \\ & 100 \\ & 29 \\ & 25 \end{aligned}$	$\begin{gathered} 180 \\ 125 \\ 36 \\ 31 \end{gathered}$	$\begin{gathered} 220 \\ 150 \\ 44 \\ 38 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLLH}}, \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Maximum Propagation Delay, Latch Clock to $Q_{A}-Q_{H}$ (Figures 3 and 7)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 140 \\ 100 \\ 28 \\ 24 \end{gathered}$	$\begin{aligned} & 175 \\ & 125 \\ & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 210 \\ & 150 \\ & 42 \\ & 36 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{tLZ}}, \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Maximum Propagation Delay, Output Enable to $Q_{A}-Q_{H}$ (Figures 4 and 8)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 150 \\ & 100 \\ & 30 \\ & 26 \end{aligned}$	$\begin{gathered} 190 \\ 125 \\ 38 \\ 33 \end{gathered}$	$\begin{aligned} & 225 \\ & 150 \\ & 45 \\ & 38 \end{aligned}$	ns
$\begin{aligned} & \text { tpzL, } \\ & \mathrm{t}_{\text {PZH }} \end{aligned}$	Maximum Propagation Delay, Output Enable to $Q_{A}-Q_{H}$ (Figures 4 and 8)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 135 \\ & 90 \\ & 27 \\ & 23 \end{aligned}$	$\begin{gathered} 170 \\ 110 \\ 34 \\ 29 \end{gathered}$	$\begin{gathered} 205 \\ 130 \\ 41 \\ 35 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LLH}}, \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	Maximum Output Transition Time, $\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$ (Figures 3 and 7)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 60 \\ & 23 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 75 \\ & 27 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 90 \\ & 31 \\ & 18 \\ & 15 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{t} \mathrm{LH},}, \\ & \mathrm{t}_{\mathrm{TH}} \mathrm{~L} \end{aligned}$	Maximum Output Transition Time, SQ $_{H}$ (Figures 1 and 7)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 27 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 32 \\ & 19 \\ & 16 \end{aligned}$	$\begin{gathered} 110 \\ 36 \\ 22 \\ 19 \end{gathered}$	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance	-	10	10	10	pF
$\mathrm{C}_{\text {out }}$	Maximum Three-State Output Capacitance (Output in High-Impedance State), $\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	-	15	15	15	pF

		Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Per Package)*	300	pF

MC74HC595A, MC74HCT595A

TIMING REQUIREMENTS (MC74HC595A)

Symbol	Parameter	$\underset{\mathbf{V}}{\mathrm{V}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
			$25^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$	$\leq 85{ }^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Serial Data Input A to Shift Clock (Figure 5)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \\ & 10 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 65 \\ & 50 \\ & 13 \\ & 11 \end{aligned}$	$\begin{aligned} & 75 \\ & 60 \\ & 15 \\ & 13 \end{aligned}$	ns
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Shift Clock to Latch Clock (Figure 6)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 60 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & \hline 95 \\ & 70 \\ & 19 \\ & 16 \end{aligned}$	$\begin{gathered} 110 \\ 80 \\ 22 \\ 19 \end{gathered}$	ns
$t_{\text {h }}$	Minimum Hold Time, Shift Clock to Serial Data Input A (Figure 5)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	ns
$\mathrm{t}_{\text {rec }}$	Minimum Recovery Time, Reset Inactive to Shift Clock (Figure 2)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \\ & 10 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 65 \\ & 50 \\ & 13 \\ & 11 \end{aligned}$	$\begin{aligned} & 75 \\ & 60 \\ & 15 \\ & 13 \end{aligned}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Reset (Figure 2)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 60 \\ & 45 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 75 \\ & 60 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 90 \\ & 70 \\ & 18 \\ & 15 \end{aligned}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Shift Clock (Figure 1)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \\ & 10 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 65 \\ & 50 \\ & 13 \\ & 11 \end{aligned}$	$\begin{aligned} & 75 \\ & 60 \\ & 15 \\ & 13 \end{aligned}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Latch Clock (Figure 6)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \\ & 10 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 65 \\ & 50 \\ & 13 \\ & 11 \end{aligned}$	$\begin{aligned} & 75 \\ & 60 \\ & 15 \\ & 13 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Maximum Input Rise and Fall Times (Figure 1)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} \hline 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} \hline 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	ns

MC74HC595A, MC74HCT595A

DC ELECTRICAL CHARACTERISTICS (MC74HCT595A)

Symbol	Parameter	Test Conditions	$\mathrm{v}_{\mathrm{cc}}$$\mathbf{v}$	Guaranteed Limit			Unit
				- 55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage	$\begin{aligned} & \hline \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \left.\right\|_{l_{\text {out }}} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 4.5 \\ \text { to } \\ 5.5 \end{gathered}$	2.0	2.0	2.0	V
V_{IL}	Maximum Low-Level Input Voltage		$\begin{gathered} 4.5 \\ \text { to } \\ 5.5 \end{gathered}$	0.8	0.8	0.8	V
V_{OH}	Minimum High-Level Output Voltage, $\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$\begin{aligned} & \mathrm{V}_{\text {in }} \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid \mathrm{l}_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	4.5	4.4	4.4	4.4	V
		$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }} \quad \mid{ }^{\text {out }}$ I $\leq 6.0 \mathrm{~mA}$	4.5	3.98	3.84	3.7	
V_{OL}	Maximum Low-Level Output Voltage, $Q_{A}-Q_{H}$	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\left.\right\|_{\text {lout }} \leq 20 \mu \mathrm{~A}\right. \end{aligned}$	4.5	0.1	0.1	0.1	V
		$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} \quad\left\|\mathrm{l}_{\text {out }}\right\| \leq 6.0 \mathrm{~mA}$	4.5	0.26	0.33	0.4	
V_{OH}	Minimum High-Level Output Voltage, SQ_{H}	$\begin{aligned} & \mathrm{V}_{\text {in }} \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	4.5	4.4	4.4	4.4	V
		$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} \quad \mathrm{II}_{\text {out }} \mathrm{I} \leq 4.0 \mathrm{~mA}$	4.5	3.98	3.84	3.7	
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage, SQ_{H}	$\begin{aligned} & V_{\text {in }}=V_{\text {IH }} \text { or } V_{\mathrm{IL}} \\ & \mathrm{I}_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	4.5	0.1	0.1	0.1	V
		$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} \quad \mathrm{II}_{\text {out }} \mathrm{I} \leq 4.0 \mathrm{~mA}$	4.5	0.26	0.33	0.4	
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {CC }}$ or GND	5.5	\pm [${ }^{1}$	± 71.0	± 71.0	$\mu \mathrm{A}$
Ioz	Maximum Three-State Leakage Current, $\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	Output in High-Impedance State $\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\text {IH }}$ $V_{\text {out }}=V_{C C}$ or GND	5.5	\pm [${ }^{\text {. }}$	$\pm \boxed{\square}$	± 10	$\mu \mathrm{A}$
$I_{\text {cc }}$	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{l}_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	5.5	4.0	40	160	$\mu \mathrm{A}$

$\Delta^{\text {l }}$ C	Additional Quiescent Supply Current	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V}, \text { Any One Input } \\ & V_{\text {in }}=V_{C C} \text { or GND, Other Inputs } \\ & I_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	5.5	$\geq-55^{\circ} \mathrm{C}$	25 to $125^{\circ} \mathrm{C}$	mA
				2.9	2.4	

AC ELECTRICAL CHARACTERISTICS (MC74HCT595A)

Symbol	Parameter	v_{cc}	Guaranteed Limit			Unit
			- 55 to $25^{\circ} \mathrm{C}$	$\leq 85{ }^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency (50\% Duty Cycle) (Figures 1 and 7)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	30	24	20	MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Maximum Propagation Delay, Shift Clock to SQ_{H} (Figures 1 and 7)	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	28	35	42	ns
$\mathrm{t}_{\mathrm{PHL}}$	Maximum Propagation Delay, Reset to SQ_{H} (Figures 2 and 7)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	29	36	44	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PH}}, \end{aligned}$	Maximum Propagation Delay, Latch Clock to $Q_{A}-Q_{H}$ (Figures 3 and 7)	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	28	35	42	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Maximum Propagation Delay, Output Enable to $Q_{A}-Q_{H}$ (Figures 4 and 8)	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	30	38	45	ns
$\begin{aligned} & \text { tpzL } \\ & \mathrm{t}_{\text {PLH }} \\ & \hline \end{aligned}$	Maximum Propagation Delay, Output Enable to $Q_{A}-Q_{H}$ (Figures 4 and 8)	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	27	34	41	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{t} \mathrm{LH}}, \\ & \mathrm{t}_{\mathrm{TH}} \mathrm{~L} \\ & \hline \end{aligned}$	Maximum Output Transition Time, $\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$ (Figures 3 and 7)	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \\ \hline \end{gathered}$	12	15	18	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}}, \\ & \mathrm{t}_{\mathrm{TH} \mathrm{~L}} \\ & \hline \end{aligned}$	Maximum Output Transition Time, SQ $_{\mathrm{H}}$ (Figures 1 and 7)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	15	19	22	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance	-	10	10	10	pF
$\mathrm{C}_{\text {out }}$	Maximum Three-State Output Capacitance (Output in High-Impedance State), $\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	-	15	15	15	pF

		Typical @ $\mathbf{2 5}{ }^{\circ} \mathbf{C}, \mathbf{V}_{\mathbf{C C}}=\mathbf{5 . 0} \mathbf{V}$	
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Per Package)*	$\mathbf{p F}$	

*Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}{ }^{2 f}+I_{C C} V_{C C}$.
TIMING REQUIREMENTS (MC74HCT595A)

Symbol	Parameter	$\stackrel{\mathrm{v}_{\mathrm{cc}}}{\mathrm{~V}}$	Guaranteed Limit			Unit
			$25^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Serial Data Input A to Shift Clock (Figure 5)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	10	13	15	ns
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Shift Clock to Latch Clock (Figure 6)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	15	19	22	ns
$t_{\text {h }}$	Minimum Hold Time, Shift Clock to Serial Data Input A (Figure 5)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	5.0	5.0	5.0	ns
trec	Minimum Recovery Time, Reset Inactive to Shift Clock (Figure 2)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	10	13	15	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Reset (Figure 2)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	12	15	18	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Shift Clock (Figure 1)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	10	13	15	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Latch Clock (Figure 6)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	10	13	15	ns
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Maximum Input Rise and Fall Times (Figure 1)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	500	500	500	ns

Test	Switch Position	$\mathbf{C}_{\mathbf{L}}$	\mathbf{R}_{L}
$\mathrm{t}_{\mathrm{PLH}} / \mathrm{t}_{\text {PHL }}$	Open	50 pF	$1 \mathrm{k} \Omega$
$\mathrm{t}_{\mathrm{PLZ}} / \mathrm{t}_{\mathrm{PZL}}$	V_{CC}		
$\mathrm{t}_{\mathrm{PHZ}} / \mathrm{t}_{\mathrm{PZH}}$	GND		

Figure 1. Test Circuit

Device	$\mathbf{V}_{\mathbf{I N}}, \mathbf{V}$	$\mathbf{V}_{\mathbf{m}}, \mathbf{V}$
MC74HC595A	V_{CC}	$50 \% \times \mathrm{V}_{\mathrm{CC}}$
MC74HCT595A	3 V	1.3 V

Figure 2. Switching Waveforms

FUNCTION TABLE

	Inputs					Resulting Function			
Operation	Reset	Serial Input A	Shift Clock	Latch Clock	Output Enable	Shift Register Contents	Latch Register Contents	Serial Output S_{H}	Parallel Outputs $Q_{A}-Q_{H}$
Reset shift register	L	X	X	L, H, \downarrow	L	L	U	L	U
Shift data into shift register	H	D	\uparrow	L, H, \downarrow	L	$\begin{gathered} \mathrm{D} \rightarrow \mathrm{SR}_{\mathrm{A}} ; \\ \mathrm{SR}_{\mathrm{N}} \rightarrow \$ \mathrm{R}_{\mathrm{N}+1} \end{gathered}$	U	$\mathrm{SR}_{\mathrm{G}} \rightarrow \mathrm{SR}_{\mathrm{H}}$	U
Shift register remains unchanged	H	X	L, H, \downarrow	L, H, \downarrow	L	U	U	U	U
Transfer shift register contents to latch register	H	X	L, H, \downarrow	\uparrow	L	U	$\mathrm{SR}_{N} \rightarrow \square \mathrm{R}_{\mathrm{N}}$	U	SR_{N}
Latch register remains unchanged	X	X	X	L, H, \downarrow	L	*	U	*	U
Enable parallel outputs	X	X	X	X	L	*	**	*	Enabled
Force outputs into high impedance state	X	X	X	X	H	${ }^{*}$	**	*	Z
SR = shift register conte LR = latch register conte	$\begin{aligned} & \mathrm{D}=\text { data }(\mathrm{L}, \mathrm{H}) \text { logic level } \\ & \mathrm{U}=\text { remains unchanged } \end{aligned}$				$\begin{array}{ll} \uparrow=\text { Low-to-High } & *= \\ \downarrow=\text { High-to-Low } & * * \end{array}$		* $=$ depends on Reset and Shift Clock inputs ** $=$ depends on Latch Clock input		

PIN DESCRIPTIONS

INPUTS

A (Pin 14)

Serial Data Input. The data on this pin is shifted into the 8-bit serial shift register.

CONTROL INPUTS
 Shift Clock (Pin 11)

Shift Register Clock Input. A low- to-high transition on this input causes the data at the Serial Input pin to be shifted into the 8 -bit shift register.

Reset (Pin 10)

Active-low, Asynchronous, Shift Register Reset Input. A low on this pin resets the shift register portion of this device only. The 8 -bit latch is not affected.

Latch Clock (Pin 12)

Storage Latch Clock Input. A low-to-high transition on this input latches the shift register data.

Output Enable (Pin 13)

Active-low Output Enable. A low on this input allows the data from the latches to be presented at the outputs. A high on this input forces the outputs $\left(\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}\right)$ into the high-impedance state. The serial output is not affected by this control unit.

OUTPUTS

$\mathbf{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}($ Pins 15, 1, 2, 3, 4, 5, 6, 7)
Noninverted, 3-state, latch outputs.

$\mathbf{S Q}_{\mathrm{H}}(\operatorname{Pin} 9)$

Noninverted, Serial Data Output. This is the output of the eighth stage of the 8 -bit shift register. This output does not have three-state capability.

EXPANDED LOGIC DIAGRAM

MC74HC595A, MC74HCT595A

MC74HC595A, MC74HCT595A

ORDERING INFORMATION

Device	Package	Marking	Shipping ${ }^{\dagger}$
MC74HC595ADG	SOIC-16	HC595A	48 Units / Rail
MC74HC595ADR2G	SOIC-16	HC595A	2500 / Tape \& Reel
MC74HC595ADR2G-Q*	SOIC-16	HC595A	2500 / Tape \& Reel
MC74HC595ADTG	TSSOP-16	$\begin{gathered} \hline \text { HC } \\ 595 \mathrm{~A} \end{gathered}$	96 Units / Rail
MC74HC595ADTR2G	TSSOP-16	$\begin{gathered} \hline \text { HC } \\ 595 \mathrm{~A} \end{gathered}$	2500 / Tape \& Reel
MC74HC595ADTR2G-Q*	TSSOP-16	$\begin{gathered} \hline \text { HC } \\ 595 \mathrm{~A} \end{gathered}$	2500 / Tape \& Reel
MC74HC595AMN1TWG-Q*	QFN16	V595A	3000 / Tape \& Reel (8 mm pitch carrier tape)
MC74HCT595ADG	SOIC-16	HCT595A	48 Units / Rail
MC74HCT595ADR2G	SOIC-16	HCT595A	2500 / Tape \& Reel
MC74HCT595ADTG	TSSOP-16	$\begin{aligned} & \hline \text { HCT } \\ & 595 \mathrm{~A} \end{aligned}$	96 Units / Rail
MC74HCT595ADTR2G	TSSOP-16	$\begin{aligned} & \text { HCT } \\ & 595 \mathrm{~A} \end{aligned}$	2500 / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*-Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

SOIC-16 9.90x3.90×1.50 1.27P
CASE 751B
ISSUE L
DATE 29 MAY 2024

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
2. DIMENSION IN MILLIMETERS. ANGLE IN DEGREES.
3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 mm PER SIDE.
5. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 mm TOTAL IN EXCESS OF THE b DIMENSION AT MAXIMUM MATERIAL CONDITION.

MILLIMETERS			
DIM	MIN	NOM	MAX
A	1.35	1.55	1.75
A1	0.00	0.05	0.10
A2	1.35	1.50	1.65
b	0.35	0.42	0.49
c	0.19	0.22	0.25
D	9.90 BSC		
E	6.00 BSC		
E1	3.90 BSC		
e	1.27 BSC		
h	0.25	---	0.50
L	0.40	0.83	1.25
L1	1.05 REF		
O	0	---	$7 \cdot$
TOLERANCE OF FORM AND POSITION			
aaa	0.10		
bbb	0.20		
ccc	0.10		
ddd	0.25		
eee	0.10		

RECOMMENDED MOUNTING FOOTPRINT
*FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE onsemi SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D

DOCUMENT NUMBER:	98ASB42566B		Document Repositon: rin red.
DESCRIPTION:	SOIC-16 9.90X3.90X1.50 1.27P		PAGE 1 OF 2

[^0] special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-16 9.90x3.90x1.50 1.27P CASE 751B ISSUE L

GENERIC

MARKING DIAGRAM*

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:	
PIN 1.	COLLECTOR	PIN 1.	CATHODE	PIN 1.	COLLECTOR, DYE \#1	PIN 1.	COLLECTOR, DYE \#1
2.	BASE	2.	ANODE	2.	BASE, \#1	2.	COLLECTOR, \#1
3.	Emitter	3.	NO CONNECTION	3.	EMITTER, \#1	3.	COLLECTOR, \#2
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, \#1	4.	COLLECTOR, \#2
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, \#2	5.	COLLECTOR, \#3
6.	BASE	6.	NO CONNECTION	6.	BASE, \#2	6.	COLLECTOR, \#3
7.	COLLECTOR	7.	ANODE	7.	EMITTER, \#2	7.	COLLECTOR, \#4
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, \#2	8.	COLLECTOR, \#4
9.	BASE	9.	CATHODE	9.	COLLECTOR, \#3	9.	BASE, \#4
10.	EMITTER	10.	ANODE	10.	BASE, \#3	10.	EMITTER, \#4
11.	NO CONNECTION	11.	NO CONNECTION	11.	EMITTER, \#3	11.	BASE, \#3
12.	EMITTER	12.	CATHODE	12.	COLLECTOR, \#3	12.	EMITTER, \#3
13.	BASE	13.	CATHODE	13.	COLLECTOR, \#4	13.	BASE, \#2
14.	COLLECTOR	14.	NO CONNECTION	14.	BASE, \#4	14.	EMITTER, \#2
15.	EMITTER	15.	ANODE	15.	EMITTER, \#4	15.	BASE, \#1
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, \#4	16.	EMITTER, \#1
STYLE 5:		STYLE 6:		STYLE 7:			
PIN 1.	DRAIN, DYE \#1	PIN 1.	CATHODE	PIN 1.	SOURCE N-CH		
2.	DRAIN, \#1	2.	CATHODE	2.	COMMON DRAIN (OUTPUT)		
3.	DRAIN, \#2	3.	CATHODE	3.	COMMON DRAIN (OUTPUT)		
4.	DRAIN, \#2	4.	CATHODE	4.	GATE P-CH		
5.	DRAIN, \#3	5.	CATHODE	5.	COMMON DRAIN (OUTPUT)		
6.	DRAIN, \#3	6.	CATHODE	6.	COMMON DRAIN (OUTPUT)		
7.	DRAIN, \#4	7.	CATHODE	7.	COMMON DRAIN (OUTPUT)		
8.	DRAIN, \#4	8.	CATHODE	8.	SOURCE P-CH		
9.	GATE, \#4	9.	ANODE	9.	SOURCE P-CH		
10.	SOURCE, \#4	10.	ANODE	10.	COMMON DRAIN (OUTPUT)		
11.	GATE, \#3	11.	ANODE	11.	COMMON DRAIN (OUTPUT)		
12.	SOURCE, \#3	12.	ANODE	12.	COMMON DRAIN (OUTPUT)		
13.	GATE, \#2	13.	ANODE	13.	GATE N-CH		
14.	SOURCE, \#2	14.	ANODE	14.	COMMON DRAIN (OUTPUT)		
15.	GATE, \#1	15.	ANODE	15.	COMMON DRAIN (OUTPUT)		
16.	SOURCE, \#1	16.	ANODE	16.	SOURCE N-CH		

| DOCUMENT NUMBER: | 98ASB42566B | Electronic Versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16 9.90X3.90X1.501.27P | PAGE 2 OF 2 |

[^1]

TSSOP-16 WB
CASE 948F
ISSUE B
DATE 19 OCT 2006

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL in EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE - W -

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.90	5.10	0.193	0.200
B	4.30	4.50	0.169	0.177
c		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	SC	0.026	BSC
H	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40	BC	0.25	BSC
M	0°	8°	0°	8°

GENERIC MARKING DIAGRAM*	
XXXX	= Specific Device Code
A	= Assembly Location
L	= Wafer Lot
Y	= Year
W	= Work Week
G or -	= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

[^2]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

[^0]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

[^1]: onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

[^2]: onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

