
June 2008 Rev 2 1/16

AN2594
Application note

EEPROM emulation
in STM32F101xx and STM32F103xx microcontrollers

Introduction
Many applications require EEPROM (electrically erasable programmable read-only
memory) for non-volatile data storage. For low-cost purposes, the STM32F101xx and
STM32F103xx devices do not use EEPROM. Instead, they implement EEPROM emulation
using the embedded Flash memory.

This application note explains the differences between external EEPROM and embedded
Flash memory, and it describes a software method for emulating EEPROM using the on-
chip Flash memory of the STM32F101xx and STM32F103xx devices.

This document also focuses on some embedded aspects in emulated EEPROM data
storage, that the reader is assumed to know.

Glossary

Medium-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 32 and 128 Kbytes.

High-density devices are STM32F101xx and STM32F103xx microcontrollers where the
Flash memory density ranges between 256 and 512 Kbytes.

www.st.com

http://www.st.com

Contents AN2594

2/16

Contents

1 Embedded Flash memory versus EEPROM: main differences 5

1.1 Difference in write access time . 5

1.2 Difference in writing method . 6

1.3 Difference in erase time . 6

2 Implementing EEPROM emulation . 7

2.1 Principle . 7

2.1.1 Application example . 8

2.1.2 EEPROM software description . 8

3 Embedded application aspects . 11

3.1 Data granularity management . 11

3.1.1 Programming on a word-by-word basis . 11

3.1.2 Programming on a byte-by-byte basis . 11

3.2 Wear leveling: Flash memory endurance improvement 11

3.2.1 Wear-leveling implementation example . 11

3.3 Page header recovery in case of power loss . 12

3.4 Cycling capability . 13

4 Revision history . 15

AN2594 List of tables

 3/16

List of tables

Table 1. Differences between embedded Flash memory and EEPROM . 5
Table 2. Status combinations and actions to be taken . 13
Table 3. Maximum number of variables stored in emulated EEPROM (with 10 000 cycles) 14
Table 4. Document revision history . 15

List of figures AN2594

4/16

List of figures

Figure 1. Header status switching between page0 and page1 . 7
Figure 2. EEPROM variable format . 8
Figure 3. Data update flow. 8
Figure 4. WriteVariable flowchart . 10
Figure 5. Page swap scheme with four pages (wear leveling). 12

AN2594 Embedded Flash memory versus EEPROM: main differences

 5/16

1 Embedded Flash memory versus EEPROM: main
differences

Electrically erasable and programmable read-only memory (EEPROM) is a key component
of many embedded applications that require non-volatile storage of data updated with a byte
or word granularity during run time.

On the other hand, the microcontrollers used in those systems are each time more often
based on embedded Flash memory. To eliminate components, save silicon space and
reduce system cost, the STM32F10xxx Flash memory may be used instead of EEPROM for
simultaneous code and data storage.

Unlike Flash memory, however, external EEPROM does not require an erase operation to
free up space before data can be rewritten. Hence a special software management is
required to store data into embedded Flash memory.

Obviously the emulation software scheme depends on many factors, including the EEPROM
reliability, the architecture of the Flash memory used, and the product requirements.

The main differences between embedded Flash memory and external serial EEPROM are
generic to any microcontroller that use the same Flash memory technology (it is not specific
to the STM32F10xxx family products). The major differences are summarized in Table 1.

1.1 Difference in write access time
As Flash memories have a shorter write access time, critical parameters can be stored
faster in the emulated EEPROM than in an external serial EEPROM, thereby improving data
storage.

Table 1. Differences between embedded Flash memory and EEPROM

Feature External EEPROM
Emulated EEPROM using on-chip Flash

memory

Write time

– a few ms

– random byte: 5 to 10 ms

– page: a hundred µs per word (5 to
10 ms per page)

Word program time: 20 µs

Erase time N/A Page/Mass Erase time: 20 ms

Write method
– once started, is not CPU-dependent
– only needs proper supply.

once started, is CPU-dependent: a CPU
reset will stop the write process even if the
supplied power stays within specifications.

Read access
– serial: a hundred µs
– random word: 92 µs

– page: 22.5 µs per byte

– parallel: a hundred ns
– very few CPU cycles per word.

– Access time: 35 ns

Write/Erase
cycles

– from 10 kilocycles to 1 000
kilocycles

– from 10 kilocycles to 100 kilocycles (the
use of many on-chip Flash memory pages
is equivalent to increasing the number of
write cycles) see Section 3.4: Cycling
capability

Embedded Flash memory versus EEPROM: main differences AN2594

6/16

1.2 Difference in writing method
One of the major differences between external EEPROM and emulated EEPROM for
embedded applications is the writing method.

● Standalone external EEPROM: once started by the CPU, the writing of a word cannot
be interrupted by a CPU reset. Only supply failure will interrupt the write process, so
properly sizing the decoupling capacitors can secure the complete writing process
inside a standalone EEPROM.

● Emulated EEPROM using an embedded Flash memory: once started by the CPU, the
write process can be interrupted by a power failure and by a CPU reset. This difference
should be analyzed by system designers to understand the possible impact(s) on their
applications and to determine a proper handling method.

1.3 Difference in erase time
The difference in erase time is the other major difference between a standalone EEPROM
and emulated EEPROM using embedded Flash memory. Unlike Flash memories,
EEPROMs do not require an erase operation to free up space before writing to them. This
means that some form of software management is required to store data in Flash memory.
Moreover, as the erase process of a block in the Flash memory takes a few milliseconds,
power shut-down and other spurious events that might interrupt the erase process (for
example a reset) should be considered when designing the Flash memory management
software. To design a robust Flash memory management software it is necessary to have a
deep understanding of the Flash memory erase process.

AN2594 Implementing EEPROM emulation

 7/16

2 Implementing EEPROM emulation

2.1 Principle
EEPROM emulation is performed in various ways by considering the Flash memory
limitations and product requirements. The approach detailed below requires at least two
Flash memory pages of identical size allocated to non-volatile data. One that is initially
erased, and offers byte-by-byte programmability; the other that is ready to take over when
the former page needs to be garbage-collected. A header field that occupies the first 16-bit
half word of each page indicates the page status.

The header field is located at the base address of each page and gives the page status
information.

Each page has three possible states:

● ERASED: the page is empty.

● RECEIVE_DATA: the page is receiving data from the other full page.

● VALID_PAGE: the page contains valid data and this state does not change until all
valid data are completely transferred to the erased page.

Figure 1 shows how the page statuses change with respect to each other.

Figure 1. Header status switching between page0 and page1

Generally, when using this method, the user does not know in advance the variable update
frequency.

The software and implementation described in this document use two Flash memory pages
to emulate EEPROM.

Each variable element is defined by a virtual address and a value to be stored in Flash
memory for subsequent retrieval or update (in the implemented software both virtual
address and data are 16 bits long). When data is modified, the modified data associated
with the earlier virtual address is stored into a new Flash memory location. Data retrieval
returns the modified data in the latest Flash memory location.

Page0 Valid Page1 Erased

Page0 Valid Page1 Receive

Page0 Erased Page1 Valid

Page0 Receive Page1 Valid

Write Page0 data

Copy Page0 data -> Page1

Write Page1 data

Copy Page1 data -> Page0

Page0 Full

Erase Page0

Page1 Full

Erase Page1

ai14606

Implementing EEPROM emulation AN2594

8/16

Figure 2. EEPROM variable format

2.1.1 Application example

The following example shows the software management of three EEPROM variables (Var1,
Var2 and Var3) with the following virtual addresses:
Var1: 5555h, Var2: 6666h and Var3: 7777h

Figure 3. Data update flow

2.1.2 EEPROM software description

This section describes the driver implemented for EEPROM emulation using the
STM32F10xxx Flash memory driver provided by STMicroelectronics.

A sample demonstration program is also supplied to demonstrate and test the EEPROM
emulation driver using the three variables Var1, Var2 and Var3 defined in the VirtAddVarTab
table declared in the software main.c file.

Variable data (16 bits)

ai14608b

Variable virtual address (16 bits)

EEPROM variable element = 32-bit word

256 elements (1 Kbyte page)
for Medium-density devices
or
512 elements (2 Kbyte page)
for High-density devices

page0 page1

12 32
77 77
12 45
77 77
BC BC
55 55

FF FF

FF FF
FF FF
FF FF
FF FF
FF FF
FF FF

FF FF

FF FF

FF FF

34 34

66 66

12 32

77 77
FF FF
FF FF
FF FF
FF FF

FF FF

FF FF

FF FF
FF FF
FF FF
FF FF
FF FF

FF FF

FF FF
FF FF

FF FF
FF FF

12 32
77 77
12 45
77 77
BC BC

55 55

FF FF

FF FF
FF FF
FF FF
FF FF
FF FF
FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF
FF FF
FF FF
FF FF

FF FF
FF FF

FF FF

FF FF
FF FF
FF FF
FF FF

FF FF
FF FF

FF FF

Page0 Page1

Active Page = Page0

FF FF
FF FF

FF FF
FF FF

32 32
77 77
22 45
66 66
BD BD
55 55

FF FF
FF FF
FF FF
FF FF
FF FF
FF FF

FF FF

FF FF
FF FF

54 54
77 77

12 32
77 77

Add Var3
=1232h

Add Var3
=1245h

Add Var1
=BCBCh

Add Var2
=6464h

Erase
Page0

Add var2 =3434h

Page0 Page1

Active Page = Page0

Page0 Page1

Active Page = Page0

12 32
77 77
12 45

77 77
FF FF

FF FF

FF FF

FF FF
FF FF
FF FF
FF FF
FF FF

FF FF

FF FF

FF FF
FF FF

FF FF
FF FF

Page0 Page1

Active Page = Page0

Page0 Page1

Active Page = Page0

Page0 Page1

Active Page = Page0

Page0 Page1

Active Page = Page1

32 32
77 77
22 45
66 66
BD BD
55 55

64 64
66 66
54 54

77 77
BD BD
55 55

FF FF

FF FF
FF FF

54 54
77 77

12 32
77 77

Page0 Page1

Active Page = Page1

FF FF
FF FF
FF FF
FF FF
FF FF
FF FF

64 64
66 66
54 54
77 77
BD BD
55 55

FF FF

FF FF
FF FF

FF FF

FF FF

FF FF
FF FF

ai14609

AN2594 Implementing EEPROM emulation

 9/16

The project contains three source files in addition to the Flash memory library source files:

● eeprom.c: it contains C code for the following project routines:

EE_Init()

EE_Format()

EE_FindValidPage()

EE_VerifyPageFullWriteVariable()

EE_ReadVariable()

EE_PageTransfer()

EE_WriteVariable()

● eeprom.h: it contains the routine prototypes and some declarations.

● main.c: this application program is an example using the described routines in order to
write to and read from the EEPROM.

User API definition

The set of functions contained in the eeprom.c file, that are used for EEPROM emulation,
are described below:

● EE_Init()

Sector header corruption is possible in the event of power loss during data update or
sector erase / transfer. In this case, the EE_Init() function will attempt to restore the
database to a known good state. This function should be called prior to accessing the
database after each power-down. It accepts no parameters. The process is described
in Table 2.

● EE_Format()

This function erases page0 and page1 and writes a VALID_PAGE header to page0.

● EE_FindValidPage()

This function reads both page headers and returns the valid page number. The passed
parameter indicates if the valid page is sought for a write or read operation
(READ_FROM_VALID_PAGE or WRITE_IN_VALID_PAGE).

● EE_VerifyPageFullWriteVariable()

It implements the write process that must either update or create the first instance of a
variable. It consists in finding the first empty location on the active page, starting from
the end, and filling it with the passed virtual address and data of the variable. In the
case the active page is full, the PAGE_FULL value is returned. This routine uses the
parameters below:

– Virtual address: may be any of the three declared variables’ virtual addresses
(Var1, Var2 or Var3)

– Data: the value of the variable to be stored

This function returns FLASH_COMPLETE on success, PAGE_FULL if there is not
enough memory for a variable update, or a Flash memory error code to indicate
operation failure (erase or program).

● EE_ReadVariable()

This function returns the data corresponding to the virtual address passed as a
parameter. Only the last update is read. The function enters in a loop in which it reads
the variable entries until the last one. If no occurrence of the variable is found, the
ReadStatus variable is returned with the value “1”, otherwise it is reset to indicate that

Implementing EEPROM emulation AN2594

10/16

the variable has been found and the variable value is returned on the Read_data
variable.

● EE_PageTransfer()

It transfers the most recent data (last variable updates) from a full page to an empty
one. At the beginning, it determines the active page, which is the page the data is to be
transferred from. The new page header field is defined and written (new page status is
RECEIVE_DATA given that it is in the process of receiving data). When the data
transfer is complete, the new page header is VALID_PAGE, the old page is erased and
its header becomes ERASED.

● EE_WriteVariable(..)

This function is called by the user application to update a variable. It uses the
EE_VerifyPageFullWriteVariable(), and EE_PageTransfer() routines that
have already been described.
Figure 4 shows the procedure for updating a variable entry in the EEPROM.

Figure 4. WriteVariable flowchart

Key features

● User-configured emulated EEPROM size

● Increased Flash memory endurance: page erased only when it is full

● Non-volatile data variables can be updated infrequently

● Interrupt servicing during program/erase is possible

Add element request

current
active page

full
Add new element at
the 1st empty element
place in the current
active page

Erase previous active page

End

End

Change the active page

Find Valid page

Yes No

EE_FindValidPage()

Copy all current elements by
reading the active page
from the bottom, taking
into account the new
updated element.EE_PageTransfer()

EE_ReadVariable()

Function call

ai14610b

EE_VerifyPageFullWriteVariable()

AN2594 Embedded application aspects

 11/16

3 Embedded application aspects

This section gives some advice on how to overcome software limitations in embedded
applications and to fulfill the needs of different applications.

3.1 Data granularity management
Emulated EEPROM can be used in embedded applications where non-volatile storage of
data updated with a byte, half-word or word granularity is required. It generally depends on
the user requirements and Flash memory architecture, such as stored data length, write
access, etc.

The STM32F10xxx on-chip Flash memory allows 16-bit, half-word programming. Data can
however be programmed by bytes or words by using some software techniques.

3.1.1 Programming on a word-by-word basis

The Flash memory driver provides a function that will write 32 bits of data “VarData” to the
desired Flash memory address “VarAddress”: FLASH_ProgramWord(VarAddress,
VarData). With this function, a whole word can be written to a specific embedded Flash
memory location.

3.1.2 Programming on a byte-by-byte basis

Writing by bytes offers the user the possibility of storing more data variables. The
performance may however be reduced.

Using the FLASH_ProgramHalfWord() function, both virtual address and data can be
written in one go as a half word.

3.2 Wear leveling: Flash memory endurance improvement
In the STM32F10xxx on-chip Flash memory, each page can be programmed or erased
reliably around 10 000 times.

For write-intensive applications that use more than two pages (3 or 4) for the emulated
EEPROM, it is recommended to implement a wear-leveling algorithm to monitor and
distribute the number of write cycles among the pages.
When no wear-leveling algorithm is used, the pages are not used at the same rate. Pages
with long-lived data do not endure as many write cycles as pages that contain frequently
updated data. The wear-leveling algorithm ensures that equal use is made of all the
available write cycles for each sector.

3.2.1 Wear-leveling implementation example

In this example, in order to enhance the emulated EEPROM capacity, four pages will be
used (Page0, Page1, Page2 and Page3).

The wear-leveling algorithm is implemented as follows: when page n is full, the device
switches to page n+1. Page n is garbage-collected and then erased. When it is the turn of

Embedded application aspects AN2594

12/16

Page3 to be full, the device goes back to Page0, Page3 is garbage-collected then erased
and so on (refer to Figure 5).

Figure 5. Page swap scheme with four pages (wear leveling)

In the software, the wear-leveling algorithm can be implemented using the
EE_FindValidPage() function.

3.3 Page header recovery in case of power loss
Data or page header corruption is possible in case of a power loss during a variable update,
page erase or transfer.

To detect this corruption and recover from it, the EE_Init() routine is implemented. It
should be called immediately after power-up. The principle of the routine is described in this
application note. The routine uses the page status to check for integrity and perform repair if
necessary.

After power loss, the EE_Init() routine is used to check the page header status. There
are 9 possible status combinations, three of which are invalid. Table 2 shows the actions that
should be taken based on the page statuses upon power-up.

12 32

55 55

FF FF

FF FF

FF FF

FF FF

FF FF

Active Page

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

Erased Erased Erased

Page0 Page1 Page2 Page3

ai14611

AN2594 Embedded application aspects

 13/16

3.4 Cycling capability
A program/erase cycle consists of one or more write accesses and one page erase
operation.

When the EEPROM technology is used, each byte can be programmed and erased a finite
number of times, typically in the range of 10 000 to 100 000.

However, in embedded Flash memory, the minimum erase size is the page and the number
of program/erase cycles applied to a page is the number of possible erase cycles. The
STM32F10xxx’s electrical characteristics guarantee 10 000 program/erase cycles per page.
The maximum lifetime of the emulated EEPROM is thereby limited by the update rate of the
most frequently written parameter.

The cycling capability is dependent of the amount/size of data that the user wants to handle.

In this example, two pages (of 1 Kbyte for Medium-density devices or 2 Kbyte for High-
density devices) are used and programmed with 16-bit data. To each variable corresponds a
16-bit virtual address. That is, each variable occupies a word of storage space. A page can
store 1 Kbyte (for Medium-density devices) or 2 Kbyte (for High-density devices) multiplied
by the Flash memory endurance of 10 000 cycles gives a total of 10 000 Kbytes (for
Medium-density devices) or 20 000 Kbytes (for High-density devices) of data storage
capacity for the lifetime of one page in the emulated Flash memory. Consequently, 20 000
Kbytes (for Medium-density devices) or 40 000 Kbytes (for High-density devices) can be
stored in the emulated EEPROM provided that two pages are used in the emulation
process. If more than two pages are used, this number is multiplied accordingly.
Knowing the data width of a stored variable, it is possible to calculate the total number of
variables that can be stored in the emulated EEPROM area during its lifetime.

Table 3 gives an idea of the number of variables that can be stored in the emulated
EEPROM according to the variable virtual address and data sizes.

Table 2. Status combinations and actions to be taken

Page1
Page0

 ERASED RECEIVE_DATA VALID_PAGE

ERASED
Invalid state
Erase both pages
and format page0

Erase Page1 and mark
Page0 as VALID_PAGE

Use page0 as the valid page
and erase page1

RECEIVE_DATA
Erase Page0 and
mark Page1 as
VALID_PAGE

Invalid state
Erase both pages and
format page0

Use page0 as the valid page
& transfer the last updated
variables from page0 to
page1 & mark page1 as valid
& erase page0

VALID_PAGE
Use page1 as the
valid page and
erase page0

Use page1 as the valid page
& transfer the last updated
variables from page1 to
page0 & mark page0 as
valid & erase page1

Invalid state
Erase both pages and format
page0

Embedded application aspects AN2594

14/16

Table 3. Maximum number of variables stored in emulated EEPROM (with 10 000
cycles)(1) (2)

1. These maximum numbers of variables do not include their corresponding virtual address.

2. The value subtracted from the maximum number of variables that can be written using two pages,
corresponds to the page status located at the top of the page. Depending on the variable granularity and,
to preserve the alignment, some empty bytes are added to the page status. These bytes are also
subtracted from this maximum number.

Variable size 2 × 1 Kbyte pages 2 × 2 Kbyte pages Unit

8-bit variable (with 8-bit virtual address) 10 000 × (210 – 2) 10 000 × (211 – 2) Variable

16-bit variable (with 16-bit virtual address) 5000 × (210 – 4) 5000 × (211 – 4) Variable

32-bit variable (with 32-bit virtual address) 2500 × (210 – 8) 2500 × (211 – 8) Variable

AN2594 Revision history

 15/16

4 Revision history

Table 4. Document revision history

Date Revision Changes

05-Oct-2007 1 Initial release.

24-Jun-2008 2

Document updated to also apply to High-density STM32F10xxx MCUs.
Small text changes.

Write/Erase cycles added to Table 1: Differences between embedded
Flash memory and EEPROM.

EE_Init() function added under User API definition on page 9.
Figure 4: WriteVariable flowchart on page 10 modified. Key features on
page 10 updated.
Section 3.3: Page header recovery in case of power loss updated.

Table 2: Status combinations and actions to be taken updated.

Table 3: Maximum number of variables stored in emulated EEPROM
(with 10 000 cycles) updated, notes added.

AN2594

16/16

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Embedded Flash memory versus EEPROM: main differences
	Table 1. Differences between embedded Flash memory and EEPROM
	1.1 Difference in write access time
	1.2 Difference in writing method
	1.3 Difference in erase time

	2 Implementing EEPROM emulation
	2.1 Principle
	Figure 1. Header status switching between page0 and page1
	Figure 2. EEPROM variable format
	2.1.1 Application example
	Figure 3. Data update flow

	2.1.2 EEPROM software description
	Figure 4. WriteVariable flowchart

	3 Embedded application aspects
	3.1 Data granularity management
	3.1.1 Programming on a word-by-word basis
	3.1.2 Programming on a byte-by-byte basis

	3.2 Wear leveling: Flash memory endurance improvement
	3.2.1 Wear-leveling implementation example
	Figure 5. Page swap scheme with four pages (wear leveling)

	3.3 Page header recovery in case of power loss
	Table 2. Status combinations and actions to be taken

	3.4 Cycling capability
	Table 3. Maximum number of variables stored in emulated EEPROM (with 10 000 cycles)

	4 Revision history
	Table 4. Document revision history

